Skip to main content
Log in

Dominant phylotypes in the 16S rRNA gene clone libraries from bacterial mats of the Uzon caldera (Kamchatka, Russia) hydrothermal springs

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

In situ analysis of the 16S rRNA genes from bacterial mats of five hydrothermal springs (36–58°C) in the Uzon caldera (Kamchatka, Russia) was carried out using clone libraries. Eight clone libraries contained 18 dominant phylotypes (over 4–5%). In most clone libraries, the phylotype of the green sulfur bacterium Chlorobaculum sp. was among the dominant ones. The phylotypes of the green nonsulfur bacteria Chloroflexus and Roseiflexus and of purple nonsulfur bacteria Rhodoblastus, Rhodopseudomonas, and Rhodoferax were also among the dominant ones. Cyanobacteria were represented by one dominant phylotype in a single spring. Among nonphototrophic bacteria, the dominant phylotypes belonged to Sulfyrihydrogenibium sp., Geothrix sp., Acidobacterium sp., Meiothermus sp., Thiomonas sp., Thiofaba sp., and Spirochaeta sp. Three phylotypes were not identified at the genus level. Most genera of phototrophic and nonphototrophic organisms corresponding to the phylotypes from Uzon hydrotherms have been previously revealed in the hydrotherms of volcanically active regions of America, Asia, and Europe. These results indicate predominance of bacterial mats carrying out anaerobic photosynthesis in the hydrotherms of the Uzon caldera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gorlenko, V.M., Anoxygenic phototrophic bacteria, in Proc. Winogradsky Inst. Microbiol., vol. 15, Photosynthetic Bacteria, Gal’chenko, V.F., Ed., Moscow: MAKS Press, 2010, pp. 133–174.

    Google Scholar 

  2. Madigan, M.T., Jung, D.O., Karr, E.A., Sattley, W.M., Achenbach, L.A., and van der Meer, M.T.J., Diversity of anoxygenic phototrophs in contrasting extreme environments, in Geothermal Biology and Geochemistry in Yellowstone National Park, Inskeep, W.P. and McDermott, T.R., Eds., Bozeman, MT: Montana State Univ. Thermal Biol. Inst., 2005, pp. 203–219.

    Google Scholar 

  3. Ward, D.M. and Cohan, F.M., Microbial diversity in hot spring cyanobacterial mats: pattern and prediction, in Geothermal Biology and Geochemistry in Yellowstone National Park, Inskeep, W.P. and McDermott, T.R., Eds., Bozeman, MT: Montana State Univ. Thermal Biol. Inst., 2005, pp. 185–202.

    Google Scholar 

  4. Ferris, M.J. and Ward, D.M., Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis, Appl. Environ. Microbiol., 1997, vol. 63, pp. 1375–1381.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Allewalt, J.P., Bateson, M.M., Revsbech, N.P., Slack, K., and Ward, D.M., Effect of temperature and light on growth of and photosynthesis by Synechococcus isolates typical of those predominating in the Octopus Spring microbial mat community of Yellowstone National Park, Appl. Environ. Microbiol., 2006, vol. 72, pp. 544–550.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. van der Meer, M.T.J., Klatt, C.G., Wood, J., Bryant, D.A., Bateson, M.M., Lammerts, L., Schouten, S., Sinninghe Damste, J.S., Madigan, M.T., and Ward, D.M., Cultivation and genomic, nutritional, and lipid biomarker characterization of Roseiflexus strains closely related to predominant in situ populations inhabiting Yellowstone hot spring microbial mats, J. Bacteriol., 2010, vol. 192, pp. 3033–3042.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Gorlenko, V.M., Bonch-Osmolovskaya, E.A., Kompantseva, E.I., and Starynin, D.A., Differentiation of microbial communities in connection with a change in the physicochemical conditions in thermophile spring, Microbiology (Moscow), 1987, vol. 56, pp. 250–257.

    Google Scholar 

  8. Gorlenko, V.M., Starynin, D.A., Bonch-Osmolovskaya, E.A., and Kachalkin, V.I., Production processes in microbial cenoses of the Thermofil’nyi Hot Spring Microbiology (Moscow), 1987, vol. 56, pp. 692–697.

    Google Scholar 

  9. Bej, A.K., Mahbubani, M.H., Dicesare, J.L., and Atlas, R.M., Polymerase chain reaction-gene probe detection of microorganisms by using filter-concentrated samples, Appl. Environ. Microbiol, 1991, vol. 57, pp. 3529–3534.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K., Current Protocols in Molecular Biology, New York: Wiley, 1994.

    Google Scholar 

  11. Alexandrov, A., Kaushik, D., and Pascal, S.M., Streamline method to analyze 16S rRNA gene clone libraries, BioTechniques, 2001, vol. 30, pp. 938–944.

    Google Scholar 

  12. Thompson, J.D., Higgins, D.G., and Gibson, T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice, Nucleic Acids Res., 1994, vol. 22, pp. 4673–4680.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Van de Peer, Y. and De Wachter, R., TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment, Comput. Appl. Biosci., 1994, vol. 10, pp. 569–570.

    PubMed  Google Scholar 

  14. Salonen, A., Nikkilä, J., Jalanka-Tuovinen, J., Immonen, O., Rajilić-Stojanović, M., Kekkonen, R.A., Palva, A., and de Vos, W.M., Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis, J. Microbiol. Methods, 2010, vol. 81, pp. 127–134.

    Article  CAS  PubMed  Google Scholar 

  15. Chernousova, E.Yu., Akimov, V.N., Gridneva, E.V., Dubinina, G.A., and Grabovich, M.Yu., Phylogenetic in situ/ex situ analysis of a sulfur mat microbial community from a thermal sulfide spring in the North Caucasus, Microbiology (Moscow), 2008, vol. 77, pp. 219–223.

    Article  CAS  Google Scholar 

  16. Castenholz, R.W., Bauld, J., and Jørgenson, B.B., Anoxygenic microbial mats of hot springs: thermophilic Chlorobium sp., FEMS Microbiol. Lett., 1990, vol. 74, pp. 325–336.

    Article  CAS  Google Scholar 

  17. Wahlund, T.M., Woese, C.R., Castenholz, R.W., and Madigan, M.T., A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov., Arch. Microbiol., 1991, vol. 156, pp. 81–90.

    Article  CAS  Google Scholar 

  18. Imhoff, J.F., Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna-Matthews-Olson protein) gene sequences, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 941–951.

    Article  CAS  PubMed  Google Scholar 

  19. Hanada, S., Takaichi, S., Matsuura, K., and Nakamura, K., Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 187–193.

    Article  CAS  PubMed  Google Scholar 

  20. O’Neill, A.H., Liu, Y., Ferrera, I., Beveridge, T.J., and Reysenbach, A.L., Sulfurihydrogenibium rodmanii sp. nov., a sulfur-oxidizing chemolithoautotroph from the Uzon Caldera, Kamchatka Peninsula, Russia, and emended description of the genus Sulfurihydrogenibium, Int. J. Syst. Evol. Microbiol., 2008, vol. 58, pp. 1147–1152.

    Article  PubMed  Google Scholar 

  21. Vesteinsdottir, H., Reinisdottir, D.B., and Örlygsson, N.J., Thiomonas islandica sp. nov., a moderately thermophilic hydrogen- and sulfur-oxidizing betaproteobacterium isolated from a hot spring, Int. J. Syst. Evol. Microbiol., 2011, vol. 61, pp. 132–137.

    Article  CAS  PubMed  Google Scholar 

  22. Mori, K. and Suzuki, K., Thiofaba tepidiphila gen. nov., sp. nov., a novel obligately chemolithoautotrophic, sulfur-oxidizing bacterium of the Gammaproteobacteria isolated from a hot spring, Int. J. Syst. Evol. Microbiol., 2008, vol. 58, pp. 1885–1891.

    Article  CAS  PubMed  Google Scholar 

  23. Aksenova, H.Y., Rainey, F.A., Janssen, P.H., Zavarzin, G.A., and Morgan, H.W., Spirochaeta thermophila sp. nov., an obligately anaerobic, polysaccharolytic, extremely thermophilic bacterium, Int. J. Syst. Bacteriol., 1992, vol. 42, pp. 175–177.

    Article  Google Scholar 

  24. Pohlschroeder, M., Leschine, S.B., and Canale-Parola, E., Spirochaeta caldaria sp. nov., a thermophilic bacterium that enhances cellulose degradation by Clostridium thermocellum, Arch. Microbiol., 1994, vol. 161, pp. 17–24.

    CAS  Google Scholar 

  25. Gorlenko, V.M., Kompantseva, E.I., and Puchkova, N.N., Influence of temperature on prevalence of phototrophic bacteria in hot springs, Microbiology (Moscow), 1985, vol. 54, pp. 681–685.

    Google Scholar 

  26. Bateson, M.M., Wieland, A., and Ward, D.M., Microscopic examination of distribution and phenotypic properties of phylogenetically diverse Chloroflexaceae- related bacteria in hot spring microbial mats, Appl. Environ. Microbiol., 2002, vol. 68, pp. 4593–4603.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Marcel, T.J., van der Meer, M.T.J., Klatt, C.G., Wood, J., Bryant, D.A., Bateson, M.M., Lammerts, L., Schouten, S., Damsté, J.S.S., Madigan, M.T., and Ward, D.M., Cultivation and genomic, nutritional, and lipid biomarker characterization of Roseiflexus strains closely related to predominant in situ populations inhabiting Yellowstone hot spring microbial mats, J. Bacteriol., 2010, vol. 192, pp. 3033–3042.

    Article  Google Scholar 

  28. Hall, J.R., Mitchell, K.R., Jackson-Weaver, O., Kooser, A.S., Cron, B.R., Crossey, L.J., and Takacs-Vesbach, C.D., Molecular characterization of the diversity and distribution of a thermal spring microbial community by using rRNA and metabolic genes, Appl. Environ. Microbiol., 2008, vol. 74, pp. 4910–4922.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Giovannoni, S.J., Ward, D.M., Pevsbech, N.P., and Castenholz, R.W., Obligately phototrophic Chloroflexus: primary production in anaerobic, hot spring microbial mats, Arch. Microbiol., 1987, vol. 147, pp. 80–87.

    Article  CAS  Google Scholar 

  30. Madigan, M.T., Chromatium tepidum sp. nov., a thermophilic photosynthetic bacterium of the family Chromatiaceae, Int. J. Syst. Bacteriol., 1986, vol. 36, pp. 222–227.

    Article  CAS  Google Scholar 

  31. Nubel, U., Garcia-Pichel, F., and Muyzer, G., PCR primers to amplify 16S rRNA genes from Cyanobacteria, Appl. Environ. Microbiol., 1997, vol. 63, pp. 3327–3332.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Gumerov, V.M., Mardanov, A.V., Beletsky, A.V., Bonch-Osmolovskaya, E.A., and Ravin, N.V., Molecular analysis of microbial diversity in the Zavarzin Spring, Uzon Caldera, Kamchatka, Microbiology (Moscow), 2011, vol. 80, pp. 244–251.

    Article  CAS  Google Scholar 

  33. Kubo, K., Knittel, K., Amann, R., Fukui, M., and Matsuura, K., Sulfur-metabolizing bacterial populations in microbial mats of the Nakabusa hot spring, Syst. Appl. Microbiol., 2011, vol. 34, pp. 293–302.

    Article  PubMed  Google Scholar 

  34. Bedard, D.L., Jerzak, G.V.S., Nübel, U., Bateson, M.M., and Ward, D.M., Novel thermophilic green sulfur bacteria discovered in hot springs in two regions of Yellowstone National Park, Amer. Soc. Microbiol., General Meeting, Salt Lake City, Utah, 2002, Abstract no. 159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. N. Akimov or V. F. Gal’chenko.

Additional information

Original Russian Text © V.N. Akimov, O.A. Podosokorskaya, M.G. Shlyapnikov, V.F. Gal’chenko, 2013, published in Mikrobiologiya, 2013, Vol. 82, No. 6, pp. 707–714.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akimov, V.N., Podosokorskaya, O.A., Shlyapnikov, M.G. et al. Dominant phylotypes in the 16S rRNA gene clone libraries from bacterial mats of the Uzon caldera (Kamchatka, Russia) hydrothermal springs. Microbiology 82, 721–727 (2013). https://doi.org/10.1134/S0026261713060027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261713060027

Keywords

Navigation