Skip to main content
Log in

Mechanism of the decomposition of the surface oxide film on polycrystalline palladium

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The decomposition of thin surface oxide films on polycrystalline palladium Pd(poly) at 500–1300 K was investigated by mathematical modeling. This process was analyzed in terms of a model including O2 desorption from the chemisorbed oxygen layer (Oads) and the passage of oxygen inserted under the surface layer of the metal (Oabs) and oxygen dissolved in metal subsurface layers (Odis) to the surface. O2 desorption was modeled on a surface with a square lattice of adsorption sites, with account taken of the energy of the lateral repulsive interactions between adjacent Oads atoms (εaa). At εaa = 10 kJ/mol and when the activation energy of O2 desorption for a chemisorbed-oxygen surface coverage of θ ≈ 0 is E 0des = 230 kJ/mol, the calculated spectra are in agreement with the oxygen temperature-programmed desorption (TPD) spectra obtained for Pd(poly) at θ ≤ 0.5. The passage of Oabs and Odis atoms to the surface was calculated using a first-order equation, with account taken of the activation energy for these atoms coming out to the surface (E 2 and E 3, respectively). As the oxide film is heated, O2 desorption is accompanied by the passage of Oabs and then Odis to the surface, which leads to an increase in the Oads surface coverage and, accordingly, to a buildup of lateral surroundings in the adsorbed layer. Owing to this fact and to the repulsive interactions between Oads atoms, the bonds between Oads and the surface weaken and E des decreases. As a consequence, the O2 desorption rate increases and a low-temperature peak with T max ≈ 710 K, which is due to the passage of Oabs atoms to the surface, and then a high-temperature peak with T max ≈ 770 K, which is due to the passage of Odis atoms to the surface, appear in the TPD spectrum. At εaa = 10 kJ/mol, E 0des = 230 kJ/mol, E 2 = 145 kJ/mol, and E 3 = 160 kJ/mol and when the number of inserted oxygen monolayers is θabs ≤ 0.3 and the number of oxygen monolayers dissolved in subsurface layers is θdis ≤ 10, the TPD spectra calculated for the given model are in agreement with the O2 TPD spectra that are observed for Pd(poly) and are due to the decomposition of surface oxide films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. www.platinum.matthey.com/applications/

  2. Kummer, J.T., in Catalysts for the Control of Automotive Pollutants, McEvoy, J.E, Ed., Washington, DC: Am. Chem. Soc., 1975.

  3. Anderson, R.B., Stein, K.C., Feenan, J.J., and Hofer, L.J.E., Ind. Eng. Chem., 1961, vol. 53, p. 809.

    Article  CAS  Google Scholar 

  4. www.platinum.matthey.com/Johnson, Matthey “Platinum 1999-2012 Interim Review”

  5. Lee, J.H. and Trimm, D.L., Fuel Process. Technol., 1995, vol. 42, p. 339.

    Article  CAS  Google Scholar 

  6. Ciuparu, D., Lyubovsky, M.R., Altman, E., Pfefferle, L.D., and Datye, A., Catal. Rev. Sci. Eng., 2002, vol. 44, p. 593.

    Article  CAS  Google Scholar 

  7. Veser, G., Ziauddin, M., and Schmidt, L.D., Catal. Today, 1999, vol. 47, p. 219.

    Article  CAS  Google Scholar 

  8. Milun, M. and Pervan, P., Surf. Sci., 1989, vol. 218, p. 363.

    Article  CAS  Google Scholar 

  9. Banse, B.A. and Koel, B.E., Surf. Sci., 1990, vol. 232, p. 275.

    Article  CAS  Google Scholar 

  10. Leisenberger, F.P., Koller, G., Sock, M., Surnev, S., Ramsey, M.G., Netzer, F.P., Klotzer, B., and Hayek, K., Surf. Sci., 2000, vol. 445, p. 380.

    Article  CAS  Google Scholar 

  11. Zheng, G. and Altman, E.I., Surf. Sci., 2000, vol. 462, p. 151.

    Article  CAS  Google Scholar 

  12. Klotzer, B., Hayek, K., Konvicka, C., Lundgren, E., and Varga, P., Surf. Sci., 2001, vols. 482–485, p.237.

    Article  Google Scholar 

  13. Lundgren, E., Kresse, G., Klein, C., Borg, M., Andersen, J.N., De Santis, M., Gauthier, Y., Konvicka, C., Schmid, M., and Varga, P., Phys. Rev. Lett., 2002, vol. 88, no. 24, pp. 246103–1.

    Article  CAS  Google Scholar 

  14. Gabasch, H., Unterberger, W., Hayek, K., Klotzer, B., Kresse, G., Klein, C., Schmid, M., and Varga, P., Surf. Sci., 2006, vol. 600, p. 205.

    Article  CAS  Google Scholar 

  15. Kan, H.H., Shumbera, R.B., and Weaver, J.F., Surf. Sci., 2008, vol. 602, p. 1337.

    Article  CAS  Google Scholar 

  16. Chang, S.L. and Thiel, P.A., J. Chem. Phys., 1988, vol. 88, p. 2071.

    Article  CAS  Google Scholar 

  17. Chang, S.L., Thiel, P.A., and Evans, J.W., Surf. Sci., 1988, vol. 205, p. 117.

    Article  CAS  Google Scholar 

  18. Klier, K., Wang, Y.-N., and Simmons, G.W., J. Phys. Chem., 1993, vol. 97, p. 633.

    Article  CAS  Google Scholar 

  19. Zheng, G. and Altman, E.I., Surf. Sci., 2002, vol. 504, p. 253.

    Article  CAS  Google Scholar 

  20. Todorova, M., Lundgren, E., Blum, V., Mikkelsen, A., Gray, S., Gustafson, J., Borg, M., Rogal, J., Reuter, K., Andersen, J.N., and Scheffler, M., Surf. Sci., 2003, vol. 541, p. 101.

    Article  CAS  Google Scholar 

  21. Lundgren, E., Gustafson, J., Mikkelsen, A., and Andersen, J.N., Phys. Rev. Lett., 2004, vol. 92, no. 4, p. 046101-1.

    Article  CAS  Google Scholar 

  22. He, J.-W. and Norton, P.R., Surf. Sci., 1988, vol. 204, p. 26.

    Article  CAS  Google Scholar 

  23. He, J.-W., Memmert, U., Griffiths, K., and Norton, P.R., J. Chem. Phys., 1989, vol. 90, p. 5088.

    Article  CAS  Google Scholar 

  24. Bennett, R.A., Poulston, S., Jones, I.Z., and Bowker, M., Surf. Sci., 1998, vol. 401, p. 72.

    Article  CAS  Google Scholar 

  25. Tanaka, H., Yoshinobu, J., and Kawai, M., Surf. Sci., 1995, vol. 327, p. L505.

    Article  CAS  Google Scholar 

  26. Todorova, M., Reuter, K., and Scheffler, M., Phys. Rev. B: Condens. Matter, 2005, vol. 71, p. 195403.

    Article  Google Scholar 

  27. Zhdanov, V.P., Surf. Sci., 1981, vol. 111, p. 63.

    Article  CAS  Google Scholar 

  28. Salanov, A.N., Titkov, A.I., and Bibin, V.N., Kinet. Catal., 2006, vol. 47, no. 3, p. 430.

    Article  CAS  Google Scholar 

  29. Salanov, A.N. and Suprun, E.A., Kinet. Catal., 2010, vol. 51, no. 3, p. 416.

    Article  CAS  Google Scholar 

  30. Salanov, A.N. and Suprun, E.A., Kinet. Catal., 2009, vol. 50, no. 1, p. 31.

    Article  CAS  Google Scholar 

  31. Salanov, A.N. and Suprun, E.A., Kinet. Catal., 2013, vol. 54, no. 1, p. 106.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Salanov.

Additional information

Original Russian Text © A.N. Salanov, E.A. Suprun, 2016, published in Kinetika i Kataliz, 2016, Vol. 57, No. 2, pp. 259–272.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salanov, A.N., Suprun, E.A. Mechanism of the decomposition of the surface oxide film on polycrystalline palladium. Kinet Catal 57, 263–275 (2016). https://doi.org/10.1134/S0023158416020129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158416020129

Keywords

Navigation