Skip to main content
Log in

Structural Changes in Palladium Nanofilms during Thermal Oxidation

  • Published:
Inorganic Materials Aims and scope

Abstract

Nanocrystalline PdO films have been characterized by X-ray diffraction, scanning electron microscopy, and electron probe microanalysis. The results demonstrate that thermal oxidation in an O2 atmosphere causes ~35-nm-thick nanocrystalline Pd films on SiO2/Si(100) substrates to undergo a sequence of phase transformations resulting in PdO formation, followed by PdO decomposition into metallic Pd at T > 1120 K. In the range 670–970 K, the a and c tetragonal cell parameters of the nanocrystalline PdO films increase monotonically with increasing temperature. The present and previously reported data have been used to construct a model for the unit cell in the crystal structure of palladium(II) oxide. Based on the quasi-chemical approach, we propose a model that accounts for the observed increase in the tetragonal cell parameters and the p-type conductivity of the nanocrystalline PdO films in terms of the formation of excess interstitial oxygen atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Yamazoe, N., Toward innovations of gas sensor technology, Sens. Actuators, B, 2005, vol. 108, pp. 2–14.

    Article  CAS  Google Scholar 

  2. Fine, G.F., Cavanagh, L.M., Afonja, A., and Binions, R., Metal oxide semiconductor gas sensors in environmental monitoring, Sensors, 2010, vol. 10, pp. 5469–5502.

    Article  CAS  Google Scholar 

  3. Hulanicki, A., Geab, S., and Ingman, F., Chemical sensors definitions and classification, Pure Appl. Chem., 1991, vol. 63, no. 9, pp. 1247–1250.

    Article  Google Scholar 

  4. Marikutsa, A.V., Rumyantseva, M.N., Gaskov, A.M., and Samoylov, A.M., Nanocrystalline tin dioxide: basics in relation with gas sensing phenomena: Part I. Physical and chemical properties and sensor signal formation, Inorg. Mater., 2015, vol. 51, no. 13, pp. 1329–1347.

    Article  CAS  Google Scholar 

  5. Korotcenkov, G., Brinzari, V., and Cho, B.K., In2O3- and SnO2-based thin film ozone sensors: fundamentals, J. Sens., 2016, paper 3816094. https://doi.org/10.1155/2016/3816094

  6. Hyo-Joong Kim and Jong-Heun Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview, Sens. Actuators, B, 2014, vol. 192, pp. 607–627.

    Article  Google Scholar 

  7. amoylov, A.M., Ryabtsev, S.V., Popov, V.N., and Badica, P., Palladium(II) oxide nanostructures as promising materials for gas sensors, Novel Nanomaterials Synthesis and Applications, Kyzas, G., Ed., London: IntechOpen, 2018, pp. 211–229

    Google Scholar 

  8. Ryabtsev, S.V., Ievlev, V.M., Samoylov, A.M., Kuschev, S.B., and Soldatenko, S.A., Microstructure and electrical properties of palladium oxide thin films for oxidizing gases detection, Thin Solid Films, 2017, vol. 636, pp. 751–759.

    Article  CAS  Google Scholar 

  9. Chiang Yu-Ju, Pan Fu-Ming. PdO nanoflake thin films for CO gas sensing at low temperatures, J. Phys. Chem. C, 2013, vol. 117, pp. 15593–15601.

    Article  CAS  Google Scholar 

  10. Yangong Zheng, Qiao Qiao, Jing Wang, Xiaogan Li, and Jiawen Jian., Gas sensing behavior of palladium oxide for carbon monoxide at low working temperature, Sens. Actuators, B, 2015, vol. 212, pp. 256–263.

    Article  CAS  Google Scholar 

  11. Ryabtsev, S.V., Shaposhnik, A.V., Samoylov, A.M., Sinelnikov, A.A., Soldatenko, S.A., Kushchev, S.B., and Ievlev, V.M., Thin films of palladium oxide for gas sensors, Dokl. Phys. Chem., 2016, vol. 470, no. 2, pp. 158–161.

    Article  CAS  Google Scholar 

  12. Ievlev, V.M., Ryabtsev, S.V., Shaposhnik, A.V., Samoylov, A.M., Kuschev, S.B., and Sinelnikov, A.A., Ultrathin films of palladium oxide for oxidizing gases detecting, Proc. Eng., 2016, vol. 168, pp. 1106–1109.

    Article  CAS  Google Scholar 

  13. Kushchev, S.B., Ryabtsev, S.V., Soldatenko, S.A., Sinel’nikov, A.A., Dontsov, A.I., Maksimenko, A.A., and Turaeva, T.L., On the synthesis of PdO–RuO2 solid-solution thin films by thermal oxidation and investigation of their gas-sensing properties, J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech., 2019, vol. 13, pp. 87–91.

    Article  Google Scholar 

  14. Ievlev, V.M., Ryabtsev, S.V., Samoylov, A.M., Shaposhnik, A.V., Kuschev, S.B., and Sinelnikov, A.A., Thin and ultrathin films of palladium oxide for oxidizing gases detection, Sens. Actuators, B, 2018, vol. 255, no. 2, pp. 1335–1342.

    Article  CAS  Google Scholar 

  15. García-Serrano, O., Andraca-Adame, A., Baca-Arroyo, R., Peña-Sierra, R., and Romero-Paredes, G.R., Thermal oxidation of ultra thin palladium (Pd) foils at room conditions, Proc. 8th Int. Conf. on Electrical Engineering, Computing Science, and Automatic Control (CCE), Merida, 2011, pp. 456–460.

  16. ASTM JCPDS–International Centre for Diffraction Data, Newtown Square: JCPDS–ICDD, 1987–2009.

  17. Meyer, H.-J. and Müller-Buschbaum, Hk., Ein Beitrag zur Chemie von Verbindungen des Bautyps MxPd3O4, Z. Naturforsch.,B: Phys. Sci., 1979, vol. 84, pp. 1661–1662.

    Google Scholar 

  18. Suryana, R., Nakatsuka, O., and Zaima, S., Formation of palladium silicide thin layers on Si (110) substrates, Jpn. J. Appl. Phys., 2011, vol. 50, pp. 05EA09.

    Article  Google Scholar 

  19. Kumar, J. and Saxena, R., Formation of NaCl- and Cu2O-type oxides of platinum and palladium on carbon and alumina support films, J. Less-Common Met., 1989, vol. 147, pp. 59–71.

    Article  CAS  Google Scholar 

  20. Ievlev V.M., Kushchev S.B., Sinel’nikov A.A., Soldatenko S.A., Ryabtsev S.V., Bosykh M.A., and Samoylov A.M., Structure of heterosystems formed by a SnO2 film and island metal (Ag, Au, or Pd) condensate, Inorg. Mater., 2016, vol. 52, no. 7, pp. 677–685.

    Article  CAS  Google Scholar 

  21. Grier, D. and McCarthy, G., Card no. 43-1024, Fargo: JCPDS–ICDD, 1991.

    Google Scholar 

  22. Aroyo, M.I., Perez-Mato, J.M., Orobengoa, D., Tasci, E., de la Flor, G., and Kirov, A., Crystallography online: Bilbao crystallographic server, Bulg. Chem. Commun., 2011, vol. 43, no. 2, pp. 183–197.

    CAS  Google Scholar 

  23. Kröger, F.A., The Chemistry of Imperfect Crystals, Amsterdam: North-Holland, 1964.

    Book  Google Scholar 

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education through the state research targets for the higher education institutions in 2020–2022, project no. 3 FZGU-2020-0036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Samoylov.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoylov, A.M., Ivkov, S.A., Pelipenko, D.I. et al. Structural Changes in Palladium Nanofilms during Thermal Oxidation. Inorg Mater 56, 1020–1026 (2020). https://doi.org/10.1134/S0020168520100131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520100131

Keywords:

Navigation