Skip to main content
Log in

Outlook on Differential Equations for Feynman Integrals (Brief Review)

  • METHODS OF THEORETICAL PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

How should modern people evaluate Feynman diagrams? This question has been receiving considerable attention in recent years. While the current answer is far from being complete, one can select several attack directions under development. One of such directions is the differential equations method. We attempt to review some of its features and outline the ideas that could help establish a more general framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. V. Kotikov, in Antidifferentiation and the Calculation of Feynman Amplitudes (Springer Nature, Cham, Switzerland, 2021), Vol. 2; arXiv: 2102.07424 [hep-ph].

  2. R. N. Lee and A. A. Pomeransky, J. High Energy Phys. 11, 165 (2013); arxiv: 1308.6676 [hep-ph].

    Article  ADS  Google Scholar 

  3. S. Müller-Stach, S. Weinzierl, and R. Zayadeh, Commun. Math. Phys. 326, 237 (2014); arXiv: 1212.4389 [hep-ph].

    Article  ADS  Google Scholar 

  4. A. Mironov and A. Morozov, Phys. Lett. B 252, 47 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  5. A. Morozov, Phys. Usp. 37, 1 (1994).

    Article  ADS  Google Scholar 

  6. E. Panzer, PhD Thesis (Humboldt Univ., Berlin, 2015); arXiv: 1506.07243 [math-ph].

  7. G. ‘t Hooft and M. J. G. Veltman, Nucl. Phys. B 153, 365 (1979).

    Article  ADS  Google Scholar 

  8. J. Broedel, C. Duhr, F. Dulat, B. Penante, and L. Tancredi, J. High Energy Phys., No. 05, 120 (2019); arXiv: 1902.09971 [hep-ph].

  9. J. Broedel, C. Duhr, F. Dulat, and L. Tancredi, J. High Energy Phys., No. 05, 093 (2018); arXiv: 1712.07089 [hep-th].

  10. S. Weinzierl, in Antidifferentiation and the Calculation of Feynman Amplitudes (Springer Nature, Cham, Switzerland, 2020), Vol. 12; arXiv: 2012.08429 [hep-th].

  11. J. L. Bourjaily, A. J. McLeod, M. von Hippel, and M. Wilhelm, Phys. Rev. Lett. 122, 031601 (2019); arXiv: 1810.07689 [hep-th].

  12. K. Bönisch, C. Duhr, F. Fischbach, A. Klemm, and C. Nega, arXiv: 2108.05310 [hep-th].

  13. M. Caffo, H. Czyz, S. Laporta, and E. Remiddi, Nuovo Cim. A 111, 365 (1998); arXiv: hep-th/9805118.

    ADS  Google Scholar 

  14. S. Laporta and E. Remiddi, Nucl. Phys. B 704, 349 (2005); arXiv: hep-ph/0406160.

    Article  ADS  Google Scholar 

  15. L. Adams, C. Bogner, and S. Weinzierl, PoS(RADCOR 2015), 096 (2016); arXiv: 1601.03646 [hep-ph].

  16. C. Duhr, in Journeys through the Precision Frontier: Amplitudes for Colliders, Proceedings of the 2014 Theoretical Advanced Study Institute in Elementary Particle Physics (World Scientific, Singapore, 2015), p. 419; arXiv: 1411.7538 [hep-ph].

  17. C. Duhr and F. Dulat, J. High Energy Phys., No. 08, 135 (2019); arXiv: 1904.07279 [hep-th].

  18. A. B. Goncharov, M. Spradlin, C. Vergu, and A. Vo-lovich, Phys. Rev. Lett. 105, 151605 (2010); arXiv: 1006.5703 [hep-th].

  19. A. Gerasimov, A. Morozov, and K. Selivanov, Int. J. Mod. Phys. A 16, 1531 (2001); arXiv: hep-th/0005053.

    Article  ADS  Google Scholar 

  20. A. Morozov, AIP Conf. Proc. 1562, 167 (2013).

    Article  ADS  Google Scholar 

  21. A. Connes and D. Kreimer, Commun. Math. Phys. 199, 203 (1998); arXiv: hep-th/9808042.

    Article  ADS  Google Scholar 

  22. S. L. Cacciatori, M. Conti, and S. Trevisan, Universe 7 (9), 328 (2021); arXiv: 2107.14721 [hep-th].

  23. S. Chmutov, M. Kazarian, and S. Lando, Sel. Math. 26 (3), 1 (2020).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A. Morozov for suggesting to think on these problems and for helpful comments and to the participants of the ITEP/MIPT working seminar for stimulating discussions.

Funding

Victor Mishnyakov acknowledges the partial support of the Russian Foundation for Basic Research (RFBR, project no. 20-01-006440) and of the Ministry of Science and Technology of Taiwan (joint project no. 21-52-52004 with RFBR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Mishnyakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishnyakov, V., Suprun, P. Outlook on Differential Equations for Feynman Integrals (Brief Review). Jetp Lett. 115, 477–483 (2022). https://doi.org/10.1134/S0021364022100447

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022100447

Navigation