Skip to main content
Log in

Diffusion of insoluble carbon in zirconium oxides

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The diffusion coefficient of insoluble carbon in zirconium oxides has been obtained for the temperature range of 900–1000°C. There are no published data on the diffusion of insoluble impurities; these data are of current interest for the diffusion theory and nuclear technologies. Tracer atoms 13C have been introduced into oxides by means of ion implantation and the kinetics of their emission from the samples in the process of annealing in air has been analyzed. The measurements have been performed using the methods of nuclear microanalysis and X-ray photoelectron spectroscopy. The diffusion activation energy is 2.7 eV and the carbon diffusion coefficient is about six orders of magnitude smaller than that for oxygen self-diffusion in the same systems. This result indicates the strong anomaly of the diffusion properties of carbon in oxides. As a result, zirconium oxides cannot be used in some nuclear technologies, in particular, as a material of sources for accelerators of short-lived carbon isotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Koester, Eur. Phys. J. A 15, 255 (2002).

    Article  ADS  Google Scholar 

  2. U. Koester, O. Arndt, E. Bouquerel, et al., Nucl. Instrum. Methods Phys. Res. B 266, 4229 (2008).

    Article  ADS  Google Scholar 

  3. K. Perajarvi, U. C. Bergmann, V. Fedoseyev, et al., Nucl. Instrum. Methods Phys. Res. B 204, 272 (2003).

    Article  ADS  Google Scholar 

  4. U. Koester, U. C. Bergmann, D. Carminati, et al., Nucl. Instrum. Methods Phys. Res. B 204, 303 (2003).

    Article  ADS  Google Scholar 

  5. R. Doshi, J. L. Routbort, and C. B. Alcockm, Def. Dif. Forum 127–128, 39 (1995).

    Article  Google Scholar 

  6. U. Brossmann, G. Knoner, H. E. Schaefer, et al., Rev. Adv. Mater. Sci. 6, 7 (2004).

    Google Scholar 

  7. V. B. Vykhodets, T. E. Kurennykh, A. S. Lakhtin, et al., Solid State Phenom. 138, 119 (2008).

    Article  Google Scholar 

  8. V. N. Volkov, V. B. Vykhodets, I. K. Golubkov, et al., Nucl. Instrum. Methods Phys. Res. 205, 73 (1983).

    Article  Google Scholar 

  9. Y. Miyagawa, S. Nakao, M. Ikeyama, et al., Nucl. Instrum. Methods Phys. Res. B 121, 340 (1997).

    Article  ADS  Google Scholar 

  10. V. S. Vladimirov, Equations of Mathematical Physics (Nauka, Moscow, 1967; Dekker, New York, 1971).

    Google Scholar 

  11. V. P. Gladkov, V. S. Zotov, and D. M. Skorov, At. Energ. 34, 290 (1973).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Vykhodets.

Additional information

Original Russian Text © V.B. Vykhodets, T.E. Kurennykh, A.G. Kesarev, M.V. Kuznetsov, V.V. Kondrat’ev, C. Hülsen, U. Koester, 2011, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 93, No. 1, pp. 8–12.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vykhodets, V.B., Kurennykh, T.E., Kesarev, A.G. et al. Diffusion of insoluble carbon in zirconium oxides. Jetp Lett. 93, 5–9 (2011). https://doi.org/10.1134/S0021364011010085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364011010085

Keywords

Navigation