Skip to main content
Log in

Abnormal Quasi-Recurrent Variations of Cosmic Rays in September 2014–February 2015

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

An anomaly in the behavior of galactic cosmic rays in September 2014–February 2015 was studied, which manifested itself as significant modulation of their flux with a period close to the Sun’s rotation. The state of the solar magnetic field and changes in the parameters of the solar wind and interplanetary magnetic field during the specified period are analyzed. The reasons for the longitudinal asymmetry in the distribution of galactic cosmic rays in the inner heliosphere are discussed. It has been established that the studied period is divided into two parts with different physical conditions on the Sun. Conclusions are drawn on the decisive joint influence of sporadic and recurrent events: repeatedly renewed “magnetic traps” created by successive coronal mass ejections from the same longitudinal zone, and anomalously expanded polar coronal holes with an enhanced magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Alaniya, M.V. and Shatashvili, L.Kh., Kvaziperiodicheskie variatsii kosmicheskikh luchei (Quasiperiodic Variations of Cosmic Rays), Tbilisi: Metsniereba, 1974.

  2. Altukhov, A.M., Okhlopkov, V.P., Charakhchyan, T.N., and Bazilevskaia, G.A., The relationship between high speed solar wind streams and 27-day cosmic ray variation, in Proc. 15th ICRC, Plovdiv, Bulgaria, 1977, vol. 3, pp. 247–251.

  3. Bazilevskaya, G.A., Okhlopkov, V.P., and Charakhch’yan, T.N., Studies of 27-day variations in cosmic rays and their relation with the nonuniform distribution of active regions on the Sun, Tr. Fiz. Inst. Akad. Nauk, 1976, vol. 88, pp. 94–113.

    Google Scholar 

  4. Belov, A.V., Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena, in Universal Heliophysical Processes: Proceedings of the International Astronomical Union, 2008, vol. 4, pp. 439–450. https://doi.org/10.1017/S1743921309029676

    Article  Google Scholar 

  5. Belov, A.V., Flares, ejections, proton events, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 6, pp. 727–737. https://doi.org/10.1134/S0016793217060020

  6. Belov, A.V., Eroshenko, E.A., Yanke, V.G., Oleneva, V.A., Abunina, M.A., and Abunin, A.A., Global survey method for the world network of neutron monitors, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 3, pp. 356–372. https://doi.org/10.1134/S0016793218030039

  7. Belov, A.V., Shlyk, N.S., Abunina, M.A., Belova, E.A., Abunin, A.A., and Papaioannou, A., Solar energetic particle events and Forbush decreases driven by the same solar sources, Universe, 2022, vol. 8, no. 8, p. 403. https://doi.org/10.3390/universe8080403

    Article  CAS  Google Scholar 

  8. Belov, A.V., Belova, E.A., Shlyk, N.S., Abunina, M.A., and Abunin, A.A., Geoefficiency of sporadic phenomena in solar cycle 24, 2023, vol. 63, no. 4, pp. 486–496. https://doi.org/10.1134/S0016793223600315

  9. Bezrodnykh, I.P., Morozova, E.I., Petrukovich, A.A., and Kozhukhov, M.A., Dynamics of solar and geomagnetic activity. III. Solar and geomagnetic activity during cycle 24. Reconstruction of the dynamics of solar and geomagnetic activity, Tr. VNIIEM, 2019, vol. 172, no. 5, pp.10–24.

    Google Scholar 

  10. Broxon, J.W., Recurrence phenomena in cosmic-ray intensity, Phys. Rev., 1941, vol. 59, no. 10, pp. 773–776. https://doi.org/10.1103/PhysRev.59.773

    Article  Google Scholar 

  11. Chen, H., Zhang, J., Ma, S., Yang, S., Li, L., Huang, X., and Xiao, J., Confined flares in solar active region 12192 from 2014 October 18 to 29, Astrophys. J. Lett., 2015, vol. 808, no. 1, p. L24. https://doi.org/10.1088/2041-8205/808/1/L24

    Article  Google Scholar 

  12. Dorman, L.I., Variatsii kosmicheskikh luchei i issledovanie kosmosa (Cosmic Ray Variations and Space Research), Moscow: AN SSSR, 1963.

  13. Dorman, L.I. and Feinberg, E.L., Cosmic ray variations, Usp. Fiz. Nauk, 1956, vol. 59, no. 2, pp. 189–228. https://doi.org/10.3367/UFNr.0059.195606a.0189

    Article  CAS  Google Scholar 

  14. Dumbović, M., Heber, B., Vršnak, B., Temmer, M., and Kirin, A., An analytical diffusion–expansion model for Forbush decreases caused by flux ropes, Astrophys. J., 2018, vol. 860, no. 1, p. 71. https://doi.org/10.3847/1538-4357/aac2de

    Article  Google Scholar 

  15. Gil, A. and Alania, M.V., Energy spectrum of the recurrent variation of galactic cosmic rays during the solar minimum of cycles 23/24, Sol. Phys., 2016, vol. 291, no. 6, pp. 1877–1886. https://doi.org/10.1007/s11207-016-0924-z

    Article  CAS  Google Scholar 

  16. Gil, A. and Mursula, K., Exceptionally strong variation of galactic cosmic ray intensity at solar rotation period after the maximum of solar cycle 24, in Proc. 34th ICRC, Hague, Netherlands, 2015, vol. 236, p. 149. https://doi.org/10.22323/1.236.0149

  17. Hassler, D.M., Zeitlin, C., Wimmer-Schweingruber, R.F., et al., Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity rover, Science, 2014, vol. 343, no. 6169, p. 1244797. https://doi.org/10.1126/science.1244797

    Article  CAS  Google Scholar 

  18. Ishkov, V.N., Outcomes and lessons from cycle 24—the first cycle in the second epoch of low solar activity, Astron. Rep., 2022, vol. 99, no. 1, pp. 48–63. https://doi.org/10.1134/S1063772922020056

    Article  Google Scholar 

  19. Karna, N., Hess, Webber, S.A., and Pesnell, W.D., Using polar coronal hole area measurements to determine the solar polar magnetic field reversal in solar cycle 24, Sol. Phys., 2014, vol. 289, no. 9, pp. 3381–3390. https://doi.org/10.1007/s11207-014-0541-7

    Article  Google Scholar 

  20. Korsos, M.B., Ruderman, M.S., and Erdelyi, R., An application of the weighted horizontal magnetic gradient to solar compact and eruptive events, Adv. Space Res., 2018, vol. 61, no. 2, pp. 595–602. https://doi.org/10.1016/j.asr.2017.05.023

    Article  Google Scholar 

  21. Laster, H., Lenchek, A.M., and Singer, S.F., Forbush decreases produced by diffusive deceleration mechanism in interplanetary space, J. Geophys. Res., 1962, vol. 67, no. 7, pp. 2639–2643. https://doi.org/10.1029/JZ067i007p02639

    Article  Google Scholar 

  22. Modzelewska, R. and Alania, M.V., The 27-day cosmic ray intensity variations during solar minimum 23/24, Sol. Phys., 2013, vol. 286, no. 2, pp. 593–607. https://doi.org/10.1007/s11207-013-0261-4

    Article  Google Scholar 

  23. Monk, A.T. and Compton, A.H., Recurrence phenomena in cosmic-ray intensity, Rev. Mod. Phys., 1939, vol. 11, nos. 3–4, pp. 173–179. https://doi.org/10.1103/RevModPhys.11.173

    Article  Google Scholar 

  24. Mordvinov, A.V. and Yazev, S.A., Reversals of the Sun’s polar magnetic fields in relation to activity complexes and coronal holes, Sol. Phys., 2014, vol. 289, no. 6, pp. 1971–1981. https://doi.org/10.1007/s11207-013-0456-8

    Article  Google Scholar 

  25. Munakata, K., Yasue, S., Kato, C., Kota, J., Tokumaru, M., Kojima, M., Darwish, A.A., Kuwabara, T., and Bieber, J.W., On the cross-field diffusion of galactic cosmic rays into an ICME, in Advances in Geosciences, vol. 2: Solar Terrestrial, Duldig, M., Ed., Singapore: World Scientific Publishing, 2006, pp. 115–124.https://doi.org/10.1142/9789812707185_0009

  26. Obridko, V.N., Shel’ting, B.D., and Kharshiladze, A.F., Calculation of the interplanetary magnetic field based on its value in the solar photosphere, Geomagn. Aeron. (Engl. Transl.), 2006, vol. 46, no. 3, pp. 294–302.

  27. Obridko, V.N., Pipin, V.V., Sokoloff, D., and Shibalova, A.S., Solar large-scale magnetic field and cycle patterns in solar dynamo, Mon. Not. R. Astron. Soc., 2021, vol. 504, no. 4, pp. 4990–5000. https://doi.org/10.1093/mnras/stab1062

    Article  Google Scholar 

  28. Petrie, G.J.D., Petrovay, K., and Schatten, K., Solar polar fields and the 22-year activity cycle: Observations and models, Space Sci. Rev., 2014, vol. 186, nos. 1–4, pp. 325–357. https://doi.org/10.1007/s11214-014-0064-4

    Article  Google Scholar 

  29. Pishkalo, N.I. and Leiko, U.M., Dynamics of the solar circumpolar magnetic field at the maximum of cycle 24, Kinematika Fiz. Nebesnykh Tel, 2016, vol. 32, no. 2, pp. 37–47.

    Google Scholar 

  30. Sdobnov, V.E., Kravtsova, M.V., and Olemskoi, S.V., Modulation effect of magnetic corotating trap on 27-day cosmic ray variation in November–December 2014, J. Sol.-Terr. Phys., 2019, vol. 5, no. 1, pp. 11–13.

    Google Scholar 

  31. Sheeley, N.R., Jr. and Wang, Y.-M., The recent rejuvenation of the Sun’s large-scale magnetic field: A clue for understanding past and future sunspot cycles, Astrophys. J., 2015, vol. 809, no. 2, p. 113. https://doi.org/10.1088/0004-637X/809/2/113

    Article  CAS  Google Scholar 

  32. Shlyk, N.S., Belov, A.V., Abunina, M.A., Eroshenko, E.A., Abunin, A.A., Oleneva, V.A., and Yanke, V.G., Influence of interacting solar wind disturbances on the variations in galactic cosmic rays, Geomagn. Aeron. (Engl. Transl.), 2021, vol. 61, no. 6, pp. 792–800. https://doi.org/10.1134/S0016793221060128

  33. Shlyk, N.S., Belov, A.V., Abunina, M.A., Abunin, A.A., Oleneva, V.A., and Yanke, V.G., Forbush decreases caused by paired interacting solar wind disturbances, Mon. Not. R. Astron. Soc., 2022, vol. 511, no. 4, pp. 5897–5908. https://doi.org/10.1093/mnras/stac478

    Article  CAS  Google Scholar 

  34. Sun, X., Hoeksema, J.T., Liu, Ya., and Zhao, Ju., On polar magnetic field reversal and surface flux transport during solar cycle 24, Astrophys. J., 2015, vol. 798, no. 2, p. 114. https://doi.org/10.1088/0004-637X/798/2/114

    Article  Google Scholar 

  35. Svalgaard, L. and Kamide, Y., Asymmetric solar polar field reversals, Astrophys. J., 2013, vol. 763, no. 1, p. 23. https://doi.org/10.1088/0004-637X/763/1/23

    Article  CAS  Google Scholar 

  36. Thalmann, J.K., Su, Y., Temmer, M., and Veronig, A.M., The confined X-class flares of solar active region 2192, Astrophys. J. Lett., 2015, vol. 801, no. 2, p. L23. https://doi.org/10.1088/2041-8205/801/2/L23

    Article  CAS  Google Scholar 

  37. Vallarta, M.S. and Godart, O., A theory of world-wide periodic variations of the intensity of cosmic radiation, Rev. Mod. Phys., 1939, vol. 11, nos. 3–4, pp. 180–189. https://doi.org/10.1103/RevModPhys.11.180

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This article is a continuation of the work by Evgenia Aleksandrovna Eroshenko and is dedicated to her blessed memory.

Funding

This study was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Shlyk.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shlyk, N.S., Belov, A.V., Obridko, V.N. et al. Abnormal Quasi-Recurrent Variations of Cosmic Rays in September 2014–February 2015. Geomagn. Aeron. 64, 211–223 (2024). https://doi.org/10.1134/S0016793223601096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223601096

Navigation