Skip to main content
Log in

Effects of geomagnetic disturbances in daytime variations of the atmospheric electric field in polar regions

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

We have studied the influence of daytime polar substorms (geomagnetic bays under the IMF Bz > 0) on variations of the vertical gradient of the atmospheric electric field potential (Ez) observed at the Polish Hornsund Station (Svalbard, Norway). Only the observations of Ez under “fair weather” conditions were used, i.e. in the absence of strong wind, precipitations, low cloud cover, etc. We studied more than 20 events of daytime polar substorms registered by the Scandinavian chain of IMAGE magnetometers in 2010–2014 during the “fair weather” periods at the Hornsund Station. Analysis of the observations showed that Ez significantly deviates from the its background variations during daytime, as a rule, when the Hornsund Station is in the region of projection of the daytime auroral oval, the position of which was determined from OVATION data. It was shown that the development of a daytime polar substorm leads to fluctuating enhance of Ez values. It was found that Ez surges are accompanied by intensification of field-aligned electric currents outflowing from the ionosphere, which were calculated from the data of low-orbit communication satellites of the AMPERE project.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anisimov, S.V. and Mareev, E.A., Geophysical studies of the global electric circuit, Izv., Phys. Solid Earth, 2008, vol. 44, no. 10, pp. 760–769.

    Article  Google Scholar 

  • Antonova, E.E., Kirpichev, I.P., Vovchenko, V.V., Stepanova, M.V., Riazantseva, M.O., Pulinets, M.S., Ovchinnikov, I.L., and Znatkova, S.S., Characteristics of plasma ring, surrounding the earth at geocentric distances ~7–10RE, and magnetospheric current systems, J. Atmos. Sol.–Terr. Phys., 2013, vol. 99, pp. 85–91. doi 10.1016/j.jastp.2012.08.013

    Article  Google Scholar 

  • Bandilet, O.I., Kanonidi, Kh.D., Chernyshova, S.P., and Sheftel’, V.M., Effects of magnetospheric substorms in the atmospheric electric field, Geomagn. Aeron., 1986, vol. 26, no. 1, pp. 159–160.

    Google Scholar 

  • Belova, E., Kirkwood, S., and Tammet, H., The effect of magnetic substorms on near-ground atmospheric currents, Ann. Geophys., 2001, vol. 18, pp. 1623–1629.

    Article  Google Scholar 

  • Berlinski, J., Pankanin, G., and Kubicki, M., Large scale monitoring of troposphere electric field, in Proceedings of the 13th Conference on Atmospheric Electricity (ICAE), Beijing, 2007, pp. 29–33.

    Google Scholar 

  • Chalmers, J.A., Atmospheric Electricity, Oxford: Pergamon, 1967; Leningrad: Gidrometeoizdat, 1974.

    Google Scholar 

  • Feldstein, Y.I., Magnetic field variation in near pole region during magnetically quiet periods and interplanetary magnetic fields, Space Sci. Rev., 1976, vol. 18, pp. 777–861.

    Google Scholar 

  • Feldstein, Y.I., Popov, V.A., Cumnock, J.A., Prigancova, A., Blomberg, L.G., Kozyra, J.U., Tsurutani, B.T., Gromova, L.I., and Levitin, A.E., Auroral electrojets and boundaries of plasma domains in the magnetosphere during magnetically disturbed intervals, Ann. Geophys., 2006, vol. 24, pp. 2243–2276.

    Article  Google Scholar 

  • Frank-Kamenetsky, A.V., Troshichev, O.A., Burns, G.B., and Papitashvili, V.O., Variations of the atmospheric electric field in the near-pole region related to the interplanetary magnetic field, J. Geophys. Res., 2001, vol. 106, no. A1, pp. 179–190.

    Article  Google Scholar 

  • Friis-Christensen, E. and Wilhjelm, J., Polar cap currents for different directions of the interplanetary magnetic field in the Y–Z plane, J. Geophys. Res., 1975, vol. 80, no. 10, pp. 1248–1260.

    Article  Google Scholar 

  • Gromova, L.I., Kleimenova, N.G., Levitin, A.E., Gromov, S.V., Dremukhina, L.A., and Zelinsky, N.R., Daytime geomagnetic disturbances at high latitudes during a strong magnetic storm of June 21–23, 2015: The storm initial phase, Geomagn. Aeron. (Engl. Transl.), 2016, no. 3, pp. 281–292. doi 10.1134/S0016793216030051

    Article  Google Scholar 

  • Iijima, T., Potemra, T.A., Zanetti, L.J., and Bythrow, P.F., Large-scale Birkeland currents in the dayside polar region during strongly northward IMF: A new Birkeland current system, J. Geophys. Res., 1998, vol. 103, pp. 26271–26283.

    Article  Google Scholar 

  • Iwasaki, N., Localized abnormal geomagnetic disturbance near the geomagnetic pole and simultaneous ionospheric variation, Rep. Ionos. Space Res. Jpn., 1971, vol. 25, pp. 163–186.

    Google Scholar 

  • Kleimenova, N.G., Kozyreva, O.V., Michnowski, S., and Kubicki, M., Morning polar substorms and variations in the atmospheric electric field, Geomagn. Aeron. (Engl. Transl.), 2010, vol. 50, no. 1, pp. 48–57.

    Article  Google Scholar 

  • Kleimenova, N., Kozyreva, O., Michnowski, S., and Kubicki, M., Influence of geomagnetic disturbances on the atmospheric electric field (Ez) variations at high and middle latitudes, Atmos. Sol.–Terr. Phys., 2012, vol. 99, pp. 117–122. doi 10.1016/j.jastp.2012.07.009

    Article  Google Scholar 

  • Kleimenova, N.G., Kozyreva, O.V., Kubicki, M., Odzimek, A., and Malysheva, L.M., Effect of substorms in the Earth’s nightside sector on variations in the surface atmospheric electric field at polar and equatorial latitudes, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 4, pp. 467–473. doi 10.1134/S001679321204007X

    Article  Google Scholar 

  • Kleimenova, N.G., Gromova, L.I., Dremukhina, L.A, Levitin, A.E., Zelinsky, N.R., and Gromov, S.V., High-latitude geomagnetic effects of the main phase of the geomagnetic storm of November 24, 2001 with the northern direction of IMF, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 2, pp. 174–184.

    Article  Google Scholar 

  • Kubicki, M., Results of atmospheric electricity and meteorological observations S. Kalinowski geophysical observatory at Swider, Publ. Inst. Geophys. Pol. Acad. Sci., 2001, no. D-56 (333), pp. 3–7.

    Google Scholar 

  • Levitin, A.E., Kleimenova, N.G., Gromova, L.I., Antonova, E.E., Dremukhina, L.A., Zelinsky, N.R., Gromov, S.V., and Malysheva, L.M., Geomagnetic disturbances and pulsations as a high-latitude response to considerable alternating IMF variations during the magnetic storm recovery phase (case study: May 30, 2003), Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 6, pp. 730–743. doi 10.1134/S0016793215060092

    Article  Google Scholar 

  • Michnowski, S., Solar wind influences on atmospheric electricity variables in polar regions, J. Geophys. Res., 1998, vol. 103, no. D12, pp. 13939–13048.

    Article  Google Scholar 

  • Michnowski, S., Nikiforova, N.N., and Kleimenova, N.G., The response of the ground-level electric field at Hornsund to magnetospheric–ionospheric events, Proceedings of the 10th International Conference Atmospheric Electricity, 19–24 June, 1996, Osaka, Japan, 1996, pp. 520–523.

    Google Scholar 

  • Odzimek, A., Kubicki, M., Lester, M., and Grocott, A., Relation between SuperDARN ionospheric potential and ground electric field at polar station Hornsund, Proceedings of the 14th International Conference Atmospheric Electricity, 08–12 August, 2011, Rio de Janeiro, Brazil, 2011.

    Google Scholar 

  • Olson, D.E., The evidence for auroral effects on atmospheric electricity, Pure Appl. Geophys., 1971, vol. 84, pp. 118–138.

    Article  Google Scholar 

  • Parkinson, W.C. and Torreson, O., The diurnal variation of the electric potential of the atmosphere over the ocean, Union Terr. Magn. Electr. Bull., 1931, no. 8, pp. 340–345.

    Google Scholar 

  • Roble, R.G., On solar–terrestrial relationships in atmospheric electricity, J. Geophys. Res., 1985, vol. 90, no. D4, pp. 2156–2202. doi 10.1029/JD090iD04p06000

    Article  Google Scholar 

  • Roble, R.G. and Hays, P.B., A quasi-static model of global atmospheric electricity. II. Electrical coupling between the upper and lower atmosphere, J. Geophys. Res., 1989, vol. 84, no. A12, pp. 7247–7256. doi 10.1029/JA084iA12p07247

    Article  Google Scholar 

  • Rycroft, M.J., Electrical processes coupling the atmosphere and ionosphere: An overview, J. Atmos. Sol.- Terr. Phys., 2006, vol. 68, pp. 445–456.

    Article  Google Scholar 

  • Rycroft, M.J., Israelsson, S., and Price, C., The global atmospheric electric circuit, solar activity and climate change, J. Atmos.–Terr. Phys., 2000, vol. 62, pp. 1563–1576.

    Article  Google Scholar 

  • Rycroft, M.J., Harrison, R.G., Nicoll, K.A., and Mareev, E.A., An overview of Earth’s global electric circuit and atmospheric conductivity, Space Sci. Rev., 2008, vol. 137, nos. 1–4, pp. 83–105.

    Article  Google Scholar 

  • Tinsley, B.A., Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere, Space Sci. Rev., 2000, vol. 94, nos. 1–2, pp. 231–258.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Kleimenova.

Additional information

Original Russian Text © N.G. Kleimenova, M. Kubicki, A. Odzimek, L.M. Malysheva, L.I. Gromova, 2017, published in Geomagnetizm i Aeronomiya, 2017, Vol. 57, No. 3, pp. 290–297.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleimenova, N.G., Kubicki, M., Odzimek, A. et al. Effects of geomagnetic disturbances in daytime variations of the atmospheric electric field in polar regions. Geomagn. Aeron. 57, 266–273 (2017). https://doi.org/10.1134/S0016793217030070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793217030070

Navigation