Skip to main content
Log in

Impact of two severe geomagnetic storms on the ionosphere over Indian longitude sector during March-April 2023

  • Research
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

We investigated the ionosphere response to the two severe geomagnetic storms in the ascending phase of solar cycle 25 which occurred during the 23-24 March 2023 (SYM-Hmin = −169 nT) and 23-24 April 2023 (SYM-Hmin = −233 nT) using a latitudinally aligned dense network of Global Navigation Satellite System (GNSS) receivers, magnetometers, and digisonde along the Indian longitude sector. The significant variations in TEC during the storm’s main and recovery phases are mainly linked to the influence of westward Disturbance Dynamo Electric Fields (DDEFs). During the initial phase of the March 23-24 geomagnetic storm, no changes in daytime TEC were observed, despite the storm occurring at noon time with a southward IMF Bz due to the influence of electron density in the top side ionosphere. Furthermore, both pre-reversal enhancement (PRE) and ionosphere irregularities are suppressed within two hours of their onset during the main phase of the March 23-24 storm, owing to the westward transition of zonal electric fields from an eastward direction. During the recovery phase of both storms, a daytime positive storm effect is observed over the dip equatorial region, while the beyond equatorial ionization anomaly (EIA) and mid-latitude regions perceived a negative ionospheric storm effect. This phenomenon is attributed to the influence of the dominant westward DDEFs during the period. Moreover, these DDEFs effectively inhibited the equinoctial manifestation of PRE effects and post-sunset ionospheric irregularities during the recovery phase of both storms. These findings are further confirmed with supporting information from TEC recorded by Swarm satellites, model-derived ionospheric electric fields, and thermospheric O/N2. The results from this study may advance the understanding of ionospheric response to severe geomagnetic storms under the prevailing westward DDEFs during the dayside recovery phase, complementing the global efforts for more reliable space weather modeling and prediction services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abdu, M.A., Batista, I.S., Takahashi, H., MacDougall, J., Sobral, J.H., Medeiros, A.F., Trivedi, N.B.: Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: a case study in Brazilian sector. J. Geophys. Res. Space Phys. 108(A12), 1449 (2003). https://doi.org/10.1029/2002JA009721

    Article  ADS  Google Scholar 

  • Abdu, M.A., Kherani, E.A., Batista, I.S., Sobral, J.H.A.: Equatorial evening prereversal vertical drift and spread F suppression by disturbance penetration electric fields. Geophys. Res. Lett. 36, L19103 (2009). https://doi.org/10.1029/2009GL039919

    Article  ADS  Google Scholar 

  • Amaechi, P.O., Akala, A.O., Oyedokun, J.O., Simi, K.G., Aghogho, O., Oyeyemi, E.O.: Multi-instrument investigation of the impact of the space weather events of 6–10 September 2017. Space Weather 19 (2021). https://doi.org/10.1029/2021SW002806

  • Balan, N., Otsuka, Y., Nishioka, M., Liu, J.Y., Bailey, G.J.: Physical mechanisms of the ionospheric storms at equatorial and higher latitudes during the recovery phase of geomagnetic storms. J. Geophys. Res. Space Phys. 118, 2660–2669 (2013). https://doi.org/10.1002/JGRA.50275

    Article  ADS  CAS  Google Scholar 

  • Blanc, M., Richmond, A.D.: The ionospheric disturbance dynamo. J. Geophys. Res. Space Phys. 85(A4), 1669–1686 (1980). https://doi.org/10.1029/JA085IA04P01669

    Article  ADS  Google Scholar 

  • Buonsanto, M.J.: Ionospheric storms – a review. Space Sci. Rev. 88, 563–601 (1999). https://doi.org/10.1023/A:1005107532631

    Article  ADS  CAS  Google Scholar 

  • Burns, A.G., Killeen, T.L., Deng, W., Carignan, G.R., Roble, R.G.: Geomagnetic storm effects in the low- to middle-latitude upper thermosphere. J. Geophys. Res. Space Phys. 100(A8), 14673–14691 (1995). https://doi.org/10.1029/94JA03232

    Article  ADS  Google Scholar 

  • Calabia, A., Anoruo, C., Shah, M., Amory-Mazaudier, C., Yasyukevich, Y., Owolabi, C., Jin, S.: Low-latitude ionospheric responses and coupling to the February 2014 multiphase geomagnetic storm from GNSS, magnetometers, and space weather data. Atmosphere 13(4), 518 (2022). https://doi.org/10.3390/atmos13040518

    Article  ADS  Google Scholar 

  • Chakrabarty, D., Sekar, R., Narayanan, R., Patra, A.K., Devasia, C.V.: Effects of interplanetary electric field on the development of an equatorial spread F event. J. Geophys. Res. Space Phys. 111, A12316 (2006). https://doi.org/10.1029/2006JA011884

    Article  ADS  Google Scholar 

  • Cherniak, I., Zakharenkova, I., Sokolovsky, S.: Multi-instrumental observation of storm-induced ionospheric plasma bubbles at equatorial and middle latitudes. J. Geophys. Res. Space Phys. 124, 1491–1508 (2019). https://doi.org/10.1029/2018JA026309

    Article  ADS  Google Scholar 

  • Christensen, A.B., Paxton, L.J., Avery, S., Craven, J., Crowley, G., Humm, D.C., Kil, H., Meier, R.R., Meng, C.I., Morrison, D., Ogorzalek, B.S., Straus, P., Strickland, D.J., Swenson, R.M., Walterscheid, R.L., Wolven, B., Zhang, Y.: Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission. J. Geophys. Res. Space Phys. 108(A12), 1451 (2003). https://doi.org/10.1029/2003JA009918

    Article  ADS  CAS  Google Scholar 

  • de Paula, E.R., de Oliveira, C.B.A., Caton, R.G., Negreti, P.M., Batista, I.S., Martinon, A.R.F., Neto, A.C., Abdu, M.A., Monico, J.F.G., Sousasantos, J., Moraes, A.O.: Ionospheric irregularity behavior during the September 6–10, 2017 magnetic storm over Brazilian equatorial–low latitudes. Earth Planets Space 71, 1–15 (2019). https://doi.org/10.1186/S40623-019-1020-Z/

    Article  Google Scholar 

  • Dugassa, T., Habarulema, J.B., Nigussie, M.: Longitudinal variability of occurrence of ionospheric irregularities over the American, African and Indian regions during geomagnetic storms. Adv. Space Res. 63, 2609–2622 (2019). https://doi.org/10.1016/j.asr.2019.01.001

    Article  ADS  Google Scholar 

  • Dugassa, T., Mezgebe, N., Habarulema, J.B., Habyarimana, V., Oljira, A.: Ionospheric response to the 23–31 August 2018 geomagnetic storm in the Europe-African longitude sector using multi-instrument observations. Adv. Space Res. 71, 2269–2287 (2023). https://doi.org/10.1016/J.ASR.2022.10.063

    Article  ADS  Google Scholar 

  • Fuller-Rowell, T.J., Millward, G.H., Richmond, A.D., Codrescu, M.V.: Storm-time changes in the upper atmosphere at low latitudes. J. Atmos. Sol.-Terr. Phys. 64, 1383–1391 (2002). https://doi.org/10.1016/S1364-6826(02)00101-3

    Article  ADS  Google Scholar 

  • Habarulema, J.B., Katamzi-Joseph, Z.T., Burešová, D., Nndanganeni, R., Matamba, T., Tshisaphungo, M., Buchert, S., Kosch, M., Lotz, S., Cilliers, P., et al.: Ionospheric response at conjugate locations during the 7–8 September 2017 geomagnetic storm over the Europe-African longitude sector. J. Geophys. Res. Space Phys. 125 (2020). https://doi.org/10.1029/2020JA028307

  • Hashimoto, K.K., Kikuchi, T., Tomizawa, I., Nagatsuma, T.: Substorm overshielding electric field at low latitude on the nightside as observed by the HF Doppler sounder and magnetometers. J. Geophys. Res. Space Phys. 122, 10,851–10,863 (2017). https://doi.org/10.1002/2017JA024329

    Article  Google Scholar 

  • Huang, C.S., Roddy, P.A.: Effects of solar and geomagnetic activities on the zonal drift of equatorial plasma bubbles. J. Geophys. Res. Space Phys. 121, 628–637 (2016). https://doi.org/10.1002/2015JA021900

    Article  ADS  Google Scholar 

  • Jade, S., Shrungeshwara, T.S.: Ionosphere variability in low and mid-latitudes of India using GPS-TEC estimates from 2002 to 2016. Multifunct. Oper. Appl. GPS (2018). https://doi.org/10.5772/intechopen.74172. InTech

    Article  Google Scholar 

  • Jaggi, R.K., Wolf, R.A.: Self-consistent calculation of the motion of a sheet of ions in the magnetosphere. J. Geophys. Res. 78(16), 2852–2866 (1973). https://doi.org/10.1029/JA078I016P02852

    Article  ADS  Google Scholar 

  • Jenan, R., Dammalage, T.L., Panda, S.K.: Ionospheric TEC response to severe geomagnetic storm and annular solar eclipse through GNSS based TEC observations and assessment of IRI-2016 model and global ionosphere maps over Sri Lankan equatorial and low latitude region. Astrophys. Space Sci. 367, 24 (2022). https://doi.org/10.1007/s10509-022-04051-8

    Article  ADS  Google Scholar 

  • Kelley, M.C., Fejer, B.G., Gonzales, C.A.: An explanation for anomalous equatorial ionospheric electric fields associated with a northward turning of the interplanetary magnetic field. Geophys. Res. Lett. 6, 301–304 (1979). https://doi.org/10.1029/GL006I004P00301

    Article  ADS  Google Scholar 

  • Kikuchi, T., Ebihara, Y., Hashimoto, K.K., Kataoka, R., Hori, T., Watari, S., Nishitani, N.: Penetration of the convection and overshielding electric fields to the equatorial ionosphere during a quasiperiodic DP 2 geomagnetic fluctuation event. J. Geophys. Res. Space Phys. 115, A05209 (2010). https://doi.org/10.1029/2008JA013948

    Article  ADS  Google Scholar 

  • Klobuchar, J.A.: Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans. Aerosp. Electron. Syst. AES–23, 325–331 (1987). https://doi.org/10.1109/TAES.1987.310829

    Article  ADS  Google Scholar 

  • Komjathy, A., Sparks, L., Wilson, B.D., Mannucci, A.J.: Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms. Radio Sci. 40, RS6006 (2005). https://doi.org/10.1029/2005RS003279

    Article  ADS  Google Scholar 

  • Lanyi, G.E., Roth, T.: A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations. Radio Sci. 23(4), 483–492 (1988). https://doi.org/10.1029/RS023I004P00483

    Article  ADS  Google Scholar 

  • Lei, J., Zhu, Q., Wang, W., Burns, A.G., Zhao, B., Luan, X., Zhong, J., Dou, X.: Response of the topside and bottomside ionosphere at low and middle latitudes to the October 2003 superstorms. J. Geophys. Res. Space Phys. 120, 6974–6986 (2015). https://doi.org/10.1002/2015JA021310

    Article  ADS  Google Scholar 

  • Lissa, D., Venkatesh, K., Prasad, D.S.V.V.D., Niranjan, K.: Distinct ionospheric response to three different geomagnetic storms during 2016 using GPS-TEC observations over the Indian equatorial and low latitude sectors. Adv. Space Res. 70, 1089–1103 (2022). https://doi.org/10.1016/J.ASR.2022.05.027

    Article  ADS  Google Scholar 

  • Liu, X., Yuan, Y., Tan, B., Li, M.: Observational analysis of variation characteristics of GPS-based TEC fluctuation over China. ISPRS Int.l J. Geo-Inf. 5(12), 237 (2016). https://doi.org/10.3390/ijgi5120237

    Article  ADS  Google Scholar 

  • Liu, Y., Li, Z., Fu, L., Wang, J., Zhang, C.: Studying the ionospheric responses induced by a geomagnetic storm in September 2017 with multiple observations in America. GPS Solut. 24, 1–13 (2020). https://doi.org/10.1007/S10291-019-0916-1

    Article  Google Scholar 

  • Manoj, C., Maus, S.: A real-time forecast service for the ionospheric equatorial zonal electric field. Space Weather 10(S09002) (2012). https://doi.org/10.1029/2012SW000825

  • Nayak, C., Tsai, L.C., Su, S.Y., Galkin, I.A., Caton, R.G., Groves, K.M.: Suppression of ionospheric scintillation during St. Patrick’s Day geomagnetic super storm as observed over the anomaly crest region station Pingtung, Taiwan: a case study. Adv. Space Res. 60, 396–405 (2017). https://doi.org/10.1016/J.ASR.2016.11.036

    Article  ADS  Google Scholar 

  • Nishida, A.: Geomagnetic Dp 2 fluctuations and associated magnetospheric phenomena. J. Geophys. Res. 73(5), 1795–1803 (1968). https://doi.org/10.1029/JA073I005P01795

    Article  ADS  Google Scholar 

  • Pi, X., Mannucci, A.J., Lindqwister, U.J., Ho, C.M.: Monitoring of global ionospheric irregularities using the Worldwide GPS Network. Geophys. Res. Lett. 24, 2283–2286 (1997). https://doi.org/10.1029/97GL02273

    Article  ADS  CAS  Google Scholar 

  • Regi, M., Perrone, L., Del Corpo, A., Spogli, L., Sabbagh, D., Cesaroni, C., Alfonsi, L., Bagiacchi, P., Cafarella, L., Carnevale, G., De Lauretis, M., Di Mauro, D., Di Pietro, P., Francia, P., Heilig, B., Lepidi, S., Marcocci, C., Masci, F., Nardi, A., Piscini, A., Redaelli, G., Romano, V., Sciacca, U., Scotto, C.: Space weather effects observed in the northern hemisphere during November 2021 geomagnetic storm: the impacts on plasmasphere, ionosphere and thermosphere systems. Remote Sens. 14, 5765 (2022). https://doi.org/10.3390/rs14225765

    Article  ADS  Google Scholar 

  • Sahai, Y., Fagundes, P.R., Becker-Guedes, F., Bolzan, M.J.A., Abalde, J.R., Pillat, V.G., De Jesus, R., Lima, W.L.C., Crowley, G., Shiokawa, K., MacDougall, J.W., Lan, H.T., Igarashi, K., Bittencourt, J.A.: Effects of the major geomagnetic storms of October 2003 on the equatorial and low-latitude F region in two longitudinal sectors. J. Geophys. Res. Space Phys. 110, A12S91 (2005). https://doi.org/10.1029/2004JA010999

    Article  ADS  Google Scholar 

  • Santos, A.M., Abdu, M.A., Souza, J.R., Sobral, J.H.A., Batista, I.S., Denardini, C.M.: Storm time equatorial plasma bubble zonal drift reversal due to disturbance Hall electric field over the Brazilian region. J. Geophys. Res. Space Phys. 121, 5594–5612 (2016). https://doi.org/10.1002/2015JA022179

    Article  ADS  Google Scholar 

  • Şentürk, E.: Investigation of global ionospheric response of the severe geomagnetic storm on June 22-23, 2015 by GNSS-based TEC observations. Astrophys. Space Sci. 365, 110 (2020). https://doi.org/10.1007/S10509-020-03828-Z

    Article  ADS  MathSciNet  Google Scholar 

  • Shahzad, R., Shah, M., Tariq, M.A., Calabia, A., Melgarejo-Morales, A., Jamjareegulgarn, P., Liu, L.: Ionospheric–thermospheric responses to geomagnetic storms from multi-instrument space weather data. Remote Sens. 15, 2687 (2023). https://doi.org/10.3390/rs15102687

    Article  ADS  Google Scholar 

  • Shreedevi, P.R., Choudhary, R.K.: Impact of oscillating IMF Bz during 17 March 2013 storm on the distribution of plasma over Indian low-latitude and mid-latitude ionospheric regions. J. Geophys. Res. Space Phys. 122, 11,607–11,623 (2017). https://doi.org/10.1002/2017JA023980

    Article  Google Scholar 

  • Singh, R., Lee, Y.S., Song, S.M., Kim, Y.H., Yun, J.Y., Sripathi, S., Rajesh, B.: Ionospheric density oscillations associated with recurrent prompt penetration electric fields during the space weather event of 4 November 2021 over the East-Asian sector. J. Geophys. Res. Space Phys. 127, e2022JA030456 (2022). https://doi.org/10.1029/2022JA030456

    Article  ADS  Google Scholar 

  • Southwood, D.J.: The role of hot plasma in magnetospheric convection. J. Geophys. Res. 82(35), 5512–5520 (1977). https://doi.org/10.1029/JA082I035P05512

    Article  ADS  Google Scholar 

  • Sultan, P.J.: Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F. J. Geophys. Res. Space Phys. 101(A12), 26875–26891 (1996). https://doi.org/10.1029/96JA00682

    Article  ADS  Google Scholar 

  • Thampi, S.V., Shreedevi, P.R., Choudhary, R.K., Pant, T.K., Chakrabarty, D., Sunda, S., Mukherjee, S., Bhardwaj, A.: Direct observational evidence for disturbance dynamo on the daytime low-latitude ionosphere: a case study based on the 28 June 2013 space weather event. J. Geophys. Res. Space Phys. 121, 10,064–10,074 (2016). https://doi.org/10.1002/2016JA023037

    Article  Google Scholar 

  • Tsurutani, B.T., Verkhoglyadova, O.P., Mannucci, A.J., Saito, A., Araki, T., Yumoto, K., Tsuda, T., Abdu, M.A., Sobral, J.H.A., Gonzalez, W.D., McCreadie, H., Lakhina, G.S., Vasyliunas, V.M.: Prompt penetration electric fields (PPEFs) and their ionospheric effects during the great magnetic storm of 30–31 October 2003. J. Geophys. Res. Space Phys. 113 (2008). https://doi.org/10.1029/2007JA012879

  • Tulasi Ram, S., Rama Rao, P.V.S., Prasad, D.S.V.V.D., Niranjan, K., Gopi Krishna, S., Sridharan, R., Ravindran, S.: Local time dependent response of postsunset ESF during geomagnetic storms. J. Geophys. Res. Space Phys. 113, A05311 (2008). https://doi.org/10.1029/2007JA012922

    Article  ADS  Google Scholar 

  • Vankadara, R.K., Panda, S.K., Amory-Mazaudier, C., Fleury, R., Devananboyina, V.R., Pant, T.K., Jamjareegulgarn, P., Haq, M.A., Okoh, D., Seemala, G.K.: Signatures of equatorial plasma bubbles and ionospheric scintillations from magnetometer and GNSS observations in the Indian longitudes during the space weather events of early September 2017. Remote Sens. 14(3), 652 (2022). https://doi.org/10.3390/RS14030652

    Article  ADS  Google Scholar 

  • Wessel, P., Luis, J.F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W.H.F., Tian, D.: The generic mapping tools version 6. Geochem. Geophys. Geosyst. 20, 5556–5564 (2019). https://doi.org/10.1029/2019GC008515

    Article  ADS  Google Scholar 

  • Zhai, C., Tang, S., Peng, W., Cheng, X., Zheng, D.: Driver of the positive ionospheric storm over the South American sector during 4 November 2021 geomagnetic storm. Remote Sens. 15(1), 111 (2023). https://doi.org/10.3390/rs15010111

    Article  ADS  Google Scholar 

  • Zhang, X., Dong, L., Nie, L.: The ionospheric responses from satellite observations within middle latitudes to the strong magnetic storm on 25–26 August 2018. Atmosphere 13(8), 1271 (2022). https://doi.org/10.3390/atmos13081271

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the Head, CSIR-4PI for supporting the GNSS programme. We thank IIA and CSIR-Central Building Research Institute (CSIR-CBRI) for the operation and maintenance of cGNSS stations at Leh, Kodaikanal and Roorkee. The authors acknowledge Crustal Dynamics Data Information System (CDDIS) (https://cddis.nasa.gov/archive/gnss/) for providing IGS GNSS data. The authors thank the United States Coast Guard Navigation Centre (https://www.navcen.uscg.gov/) for providing Yuma almanac data. Interplanetary and geomagnetic parameters are downloaded from the NASA-OMNI website (https://omniweb.gsfc.nasa.gov/). Swarm TEC data is obtained from the European Space Agency (ESA) VIRES web platform (https://vires.services/). Alibag magnetometer data is downloaded from the INTERMAGNET website (www.intermagnet.org) whereas the magnetometer recordings from Tirunelveli are obtained from the Indian Institute of Geomagnetism, Navi Mumbai, India. The real-time eastward equatorial electric field data is obtained from the prompt penetration equatorial electric field model (PPEEFM) (https://geomag.colorado.edu/real-time-model-of-the-ionospheric-electric-fields.html). The GUVI/TIMED satellite O/N2 images are downloaded from the website (http://guvitimed.jhuapl.edu/guvi-galleryl3on2).

Funding

This research is funded by CSIR-4PI grants MLP-1003, OLP-0005 and SERB Core Research Grant (CRG) under the grant number CRG/2019/003394.

Author information

Authors and Affiliations

Authors

Contributions

S.S.K.R., S.K.P., and S.J. designed the conceptualization and methodology of the manuscript. S.S.K.R., C.G.V., A.K.U., A.B., S.J., G.K.S. processed the data and performed formal analysis and validated the results. S.S.K.R. and C.G.V. prepared the initial manuscript and S.J., S.K.P., A.K.U. and G.K.S. reviewed the manuscript. S.J. and S.K.P. helped in funding acquisition and supervision of the research work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sampad Kumar Panda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajana, S.S.K., Panda, S.K., Jade, S. et al. Impact of two severe geomagnetic storms on the ionosphere over Indian longitude sector during March-April 2023. Astrophys Space Sci 369, 3 (2024). https://doi.org/10.1007/s10509-024-04268-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-024-04268-9

Keywords

Navigation