Skip to main content
Log in

Gallium concentration in natural melts and fluids

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

We generalize, for the first time, published and original data on the gallium concentrations in natural magmatic melts and fluids obtained by studying quenched glasses in volcanic rocks and inclusions in minerals. Based on 2688 determinations, gallium concentrations in magmatic melts vary between 0.47 and 495 ppm at average content of 18.0 ppm (+4.2/–3.4). Gallium concentrations in magmatic melts generated in different geodynamic settings show different distribution. Minimum concentrations (on average, 16.0 ppm, +3.6/–2.9) are typical of the island-arc melts, while maximum contents were determined in melts of oceanic islands (on average, 29.1 ppm, +13.4/–9.2) and intracontinental rifts and hot spots (26.5 ppm, +25.4/–13.0). Published and new 339 determinations of gallium concentrations in natural fluids indicate the wider range of their variations as compared to those of melts: from 0.02 to 11260 ppm, at average 1.6 ppm (+10.8–1.4). The possible gallium fractionation in fluid—magmatic systems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Agangi, V. S. Kamenetsky, and J. McPhie, “Evolution and emplacement of high fluorine rhyolites in the Mesoproterozoic Gawler silicic large igneous province, South Australia,” Precambrian Res. 208–211, 124–144 2012.

    Article  Google Scholar 

  • R. Arevalo, W. F. McDonough, and M. Luong, “The K/U ratio of the silicate Earth: insights into mantle composition, structure and thermal evolution,” Earth Planet. Sci. Lett. 278, 361–369 2009.

    Article  Google Scholar 

  • S. J. Barker, C. J. N. Wilson, J. A. Baker, M.-A. Millet, M. D. Rotella, I. C. Wright, and R. J. Wysoczanski, “Geo–chemistry and petrogenesis of silicic magmas in the intra-oceanic Kermadec arc,” J. Petrol. 54 (2), 351–391 2013.

    Article  Google Scholar 

  • V. A. Baskina, V. Yu. Prokof’ev, V. A. Lebedev, S. E. Borisovsky, M. G. Dobrovol’skaya, A. I. Yakushev, and S. A. Gorbacheva, “The Dal’negorsk borosilicate skarn deposit, Primorye, Russia: composition of ore-bearing solutions and boron sources, Geol. Ore Deposits 51 (3), 179–196 2009.

    Article  Google Scholar 

  • K. Berlo, H. Tuffen, V. C. Smith, J. M. Castro, D. M. Pyle, T. A. Mather, and K. Geraki, “Element variations in rhyolitic magma resulting from gas transport,” Geochim. Cosmochim. Acta 121, 436–451 2013.

    Article  Google Scholar 

  • R. J. Bodnar, T. J. Reynolds, and C. A. Kuehn, “Fluidinclusion systematics in epithermal systems,” Rev. Econ. Geol. 2, 73–97 1985.

    Google Scholar 

  • L. A. Borisenok, Geochemistry of Gallium (MGU, Moscow, 1971) [in Russian].

  • A. Y. Borisova, R. Thomas, S. Salvi, F. Candaudap, A. Lanzanova, and J. Chmeleff, “Tin and associated metal and metalloid geochemistry by femtosecond LA–ICP–QMS microanalysis of pegmatite–leucogranite melt and fluid inclusions: new evidence for melt–melt–fluid immiscibility,” Mineral. Mag. 76, 91–113 (2012a).

    Article  Google Scholar 

  • A. Y. Borisova, J.-P. Toutain, A. Stefansson, S. Gouy, and P. de Parseval, “Processes controlling the 2010 Eyjafjallajokull explosive eruption,” J. Geophys. Res. 117 (B05202), 1–18 (2012b).

    Google Scholar 

  • N. S. Bortnikov, “Geochemistry and origin of the oreforming fluids in hydrothermal–magmatic systems in tectonically active zones,” Geol. Ore Deposits 48 (1), 1–22 2006.

    Article  Google Scholar 

  • N. S. Bortnikov, G. N. Gamyanin, O. V. Vikent’eva, V. Yu. Prokof’ev, V. A. Alpatov, and A. G. Bakharev, “Fluid composition and origin in the hydrothermal system of the Nezhdaninsky gold deposit, Sakha (Yakutia), Russia,” Geol. Ore Deposits 49 (2), 87–128 2007.

    Article  Google Scholar 

  • N. S. Bortnikov, G. N. Gamynin, O. V. Vikent’eva, V. Yu. Prokof’ev, and A. V. Prokop’ev, “The Sarylakh and Sentachan gold–antimony deposits, Sakha-Yakutia: a case of combined mesothermal gold–quartz and epithermal stibnite ores,” Geol. Ore Deposits 52 (5), 339–372 2010.

    Article  Google Scholar 

  • P. A. Brandl, C. Beier, M. Regelous, W. Abouchami, K. M. Haase, D. Garbe-Schonberg, and S. J. G. Galer, “Volcanism on the flanks of the East Pacific Rise: quantitative constraints on mantle heterogeneity and melting processes,” Chem. Geol. 298–299, 41–56 2012.

    Article  Google Scholar 

  • A. Yu. Bychkov, S. Yu. Nekrasov, I. Yu. Nikolaeva, and S. S. Matveeva, “Gallium oxide solubility in vapor and indicators of heterogeneous fluid filtration,” Mineral. Mag. 75, 607–607 2011.

    Google Scholar 

  • A. Yu. Bychkov, S. S. Matveeva, T. M. Suchchevskaya, S. Yu. Nekrasov, and A. V. Ignat’ev, “Isotopic–geochemical criteria of the filtration dynamics of heterogeneous fluid at greisen mineral deposits,” Geochem. Int. 50 (11), 952–957 2012.

    Article  Google Scholar 

  • J. T. Caulfield, S. P. Turner, I. E. M. Smith, L. B. Cooper, and G. A. Jenner, “Magma evolution in the primitive, intra-oceanic Tonga arc: petrogenesis of basaltic andesites at Tofua volcano,” J. Petrol. 53, 1197–1230 2012.

    Article  Google Scholar 

  • L. B. Cooper, T. Plank, R. J. Arculus, E. H. Hauri, P. S. Hall, and S. W. Parman, “High-Ca boninites from the active Tonga Arc,” J. Geophys. Res. - Solid Earth 115 (B10206), 1–23 (2010).

    Google Scholar 

  • L. V. Danyushevsky, S. M. Eggins, T. J. Falloon, and D. Christie, “H2O abundance in depleted to moderately enriched mid-ocean ridge magmas; part I: Incompatible behavior, implications for mantle storage, and origin of regional variations,” J. Petrol. 41, 1329–1364 2000.

    Article  Google Scholar 

  • P. Davidson, V. Kamenetsky, D. R. Cooke, P. Frikken, P. Hollings, T. Mernagh, J. Skarmeta, L. Serrano, and R. Vargas, “Magmatic precursors of hydrothermal fluids at the Rio Blanco Cu–Mo deposit, Chile: links to silicate magmas and metal transport,” Econ. Geol. 100, 863–978 2005.

    Article  Google Scholar 

  • A. R. Goss, M. R. Perfit, W. I. Ridley, K. H. Rubin, G. D. Kamenov, S. A. Soule, A. Fundis, and D. J. Fornari, “Geochemistry of lavas from the 2005–2006 eruption at the East Pacific Rise, 9°46' N–9°56' N: implications for ridge crest plumbing and decadal changes in magma chamber compositions,” Geochem. Geophys., Geosyst., 11 (5), 1–35 2010.

    Article  Google Scholar 

  • K. M. Haase, N. Stroncik, D. Garbe-Schonberg, and P. Stoffers, “Formation of island arc magmas by extreme crystal fractionation: An example from Brothers Seamount, Kermadec island arc (SW Pacific),” J. Volcanol. Geotherm. Res. 152, 316–330 2006.

    Article  Google Scholar 

  • H. Hansen and K. Gronvold, “Plagioclase ultraphyric basalts in Iceland: the mush of the rift,” J. Volcanol. Geotherm. Res. 98, 1–32 2000.

    Article  Google Scholar 

  • V. V. Ivanov, Geochemistry of Traced Elements at Hydrothermal Deposits (Nedra, Moscow, 1966) [in Russian].

    Google Scholar 

  • V. V. Ivanov, Ecological Geochemistry of Elements (Nedra, Moscow, 1996), Vol. 3 [in Russian].

    Google Scholar 

  • V. V. Ivanov, O. E. Yushko-Zakharova, L. F. Borisenko, and L. N. Ovchinnikova, Geological Handbook on Siderophile and Chalcophile Trace Elements (Nedra, Moscow, 1989) [in Russian].

    Google Scholar 

  • F. E. Jenner and H. Sr. C. O’Neill, “Analysis of 60 elements in 616 ocean floor basaltic glasses,” Geochem., Geophys., Geosyst. 13 (1), 1–13 2012.

    Google Scholar 

  • F. E. Jenner, R. J. Arculus, J. A. Mavrogenes, N. J. Dyriw, O. Nebel, and E. H. Hauri, “Chalcophile element systematics in volcanic glasses from the northwestern Lau Basin,” Geochem., Geophys., Geosyst. 13 (6), 1–25 2012.

    Article  Google Scholar 

  • V. S. Kamenetsky and S. M. Eggins, “Systematics of metals, metalloids, and volatiles in MORB melts: Effects of partial melting, crystal fractionation and degassing (a case study of Macquarie Island glasses),” Chem. Geol. 302–303, 76–86 2012.

    Article  Google Scholar 

  • V. S. Kamenetsky, S. M. Eggins, A. J. Crawford, D. H. Green, M. Gasparon, and T. J. Falloon, “Calcic melt inclusions in primitive olivine at 43° N MAR: evidence for meltrock reaction/melting involving clinopyroxene-rich lithologies during MORB generation,” Earth Planet. Sci. Lett. 160, 115–132 1998.

    Article  Google Scholar 

  • V. S. Kamenetsky, J. L. Everard, A. J. Grawford, R. Varne, S. M. Eggins, and R. Lanyon, “Enriched end-member of primitive MORB melts: petrology and geochemistry of glasses from Macquarie Island (SW Pacific),” J. Petrol. 41, 411–430 2000.

    Article  Google Scholar 

  • P. J. Kelly, P. R. Kyle, N. W. Dunbar, and K. W. W. Sims “Geochemistry and mineralogy of the phonolite lava lake, Erebus volcano, Antarctica: 1972–2004 and comparison with older lavas,” J. Volcanol. Geotherm. Res. 177, 589–605 2008.

    Article  Google Scholar 

  • J.-I. Kimura and Y. Nagahashi, “Origin of a voluminous iron-enriched high-K rhyolite magma erupted in the North Japan Alps at 1.75 Ma: Evidence for upper crustal melting,” J. Volcanol. Geotherm. Res. 167, 81–99 2007.

    Article  Google Scholar 

  • B. I. Kogan, O. V. Vershkovskaya, and I. T Slavikovskaya, Gallium (Nauka, Moscow, 1973) [in Russian].

  • V. A. Kovalenker, V. A. Naumov, V. Yu. Prokof’ev, S. Jelen, and M. Gaber, “Compositions of magmatic melts and evolution of mineral-forming fluids in the Banska Stiavnica epithermal Au–Ag–Pb–Zn deposit, Slovakia: a study of inclusions in minerals,” Geochem. Int. 44 (2), 118–136 2006.

    Article  Google Scholar 

  • V. I. Kovalenko, G. M. Tsareva, R. L. Hervig, and V. V. Yarmolyuk, “Trace elements and water in melt inclusions (magmas) of the rare-metal alkali granites,” Dokl. Akad. Nauk 326 (2), 349–353 1992.

    Google Scholar 

  • V. I. Kovalenko, V. B. Naumov, I. P. Solovova, A. V. Girnis, R. L. Hervig, and A. Boriani, “Volatiles, compositions and conditions of crystallization of magmas of the basalt–pantellerite association of Pantelleria Island: evidence from melt and fluid inclusions,” Petrologiya 2 (1), 24–42 1994.

    Google Scholar 

  • V. I. Kovalenko, G. M. Tsaryeva, V. B. Naumov, R. L. Hervig, and S. Newman, “Magma of pegmatites from Volhynia: Composition and crystallization parameters determined by magmatic inclusion studies,” Petrology 4 (3), 277–290 1996.

    Google Scholar 

  • S. G. Kryazhev, V. Yu. Prokof’ev, and Yu. V. Vasyuta, “Application of ICP-MS in analyzing ore-bearing fluids,” Vestn. Mosk. Gos. Univ., Ser. 4. Geol., No. 4, 30–36 2006.

    Google Scholar 

  • M. Laubier, A. Gale, and C. H. Langmuir, “Melting and crustal processes at the FAMOUS segment (Mid-Atlantic Ridge): New insights from olivine-hosted melt inclusions from multiple samples,” J. Petrol. 53, 665–698 2012.

    Article  Google Scholar 

  • N. P. Laverov, V. Yu. Prokof’ev, V. V. Distler, M. A. Yudovskaya, A. M. Spiridonov, V. I. Grebenshchikova, and N. L. Matel, “New data on conditions of ore deposition and composition of ore-forming fluids in the Sukhoi Log gold–platinum deposit,” Dokl. Earth Sci. 371 (2), 357–361 2000.

    Google Scholar 

  • P. W. Lipman and M. L. Coombs, “North Kona slump: Submarine flank failure during the early tholeiitic shield stage of Hualalai Volcano,” J. Volcanol. Geotherm. Res. 151, 189–216 2006.

    Article  Google Scholar 

  • A. S. Lloyd, T. Plank, P. Ruprecht, E. H. Hauri, and W. Rose, “Volatile loss from melt inclusions in pyroclasts of differing sizes,” Contrib. Mineral. Petrol. 165, 129–153 2012.

    Article  Google Scholar 

  • V. V. Lyakhovich, Trace Elements in the Rock-Forming Minerals of Granitoids (Nedra, Moscow, 1972) [in Russian].

    Google Scholar 

  • V. V. Lyakhovich, Trace Elements in Accessory Minerals of Granitoids (Nedra, Moscow, 1973) [in Russia].

    Google Scholar 

  • F. P. Mel’nikov, V. Yu. Prokof’ev, and N. N. Shatagin, Thermobarogeochemistry (Akademicheskii Proekt, Moscow, 2008) [in Russian].

    Google Scholar 

  • C. M. Meyzen, M. J. Toplis, E. Humler, J. N. Ludden, and C. Mevel, “A discontinuity in mantle composition beneath the southwest Indian ridge,” Nature 421, 731–733 2003.

    Article  Google Scholar 

  • R. Muhe, H. Bohrmann, D. Garbe-Schonberg, and H. Kassens, “E-MORB glasses from the Gakkel Ridge (Arctic Ocean) at 87° N: evidence for the Earth’s most northerly volcanic activity,” Earth Planet. Sci. Lett. 152, 1–9 1997.

    Article  Google Scholar 

  • V. B. Naumov, V. L. Rusinov, V. A. Kovalenker, and N. N. Kononkova, “Composition of melt, contents of trace elements, and conditions of crystallization of quartz from ignimbrites of the Lashkereksky Massif: data on magmatic inclusions,” Dokl. Akad. Nauk, 332 (1), 79–82 1993.

    Google Scholar 

  • V. B. Naumov, V. I. Kovalenko, V. A. Dorofeeva, and V. V. Yarmolyuk, “Average concentrations of major, volatile, and trace elements in magmas of various geodynamic settings,” Geochem. Int. 42 (10), 977–988 2004.

    Google Scholar 

  • V. B. Naumov, V. A. Kovalenker, and V. L. Rusinov, “The chemical composition, volatiles and trace elements of melts from the volcano-plutonic complex Kuramin mountains (Middle Tian-Shan): evidence from inclusions in quartz,” ACROFI I, May 26–28, Nanjing, China, Program with Abstracts (Nanjing, 2006), pp. 150–151 (2006).

    Google Scholar 

  • V. B. Naumov, V. A. Dorofeeva, and O. F. Mironova “Principal physicochemical parameters of natural mineralforming fluids,” Geochem. Int. 47 (8), 777–802 2009.

  • V. B. Naumov, V. I. Kovalenko, V. A. Dorofeeva, A. V. Girnis, and V. V. Yarmolyuk, “Average compositions of igneous melts from main geodynamic settings according to the investigation of melt inclusions in minerals and quenched glasses of rocks,” Geochem. Int., 48 (12), 1185–1207 2010.

    Article  Google Scholar 

  • V. B. Naumov, V. A. Dorofeeva, A. V. Girnis, and V. V. Yarmolyuk, “Comparison of major, volatile, and trace element contents in the melts of mid-ocean ridges on the basis of data on inclusions in minerals and quenched glasses of rocks,” Geochem. Int. 52 (8), 347–364 2014.

    Article  Google Scholar 

  • S. Yu. Nekrasov, A. A. Migdisov, A. E. Williams-Jones, and A. Yu. Bychkov, “An experimental study of the solibility of Gallium (III) oxide in HCl-bearing water vapour,” Geochim. Cosmochim. Acta 119, 137–148 2013.

    Article  Google Scholar 

  • A. R. L. Nichols, R. J. Wysoczanski, K. Tani, Y. Tamura, J. A. Baker, and Y. Tatsumi, “Melt inclusions reveal geochemical cross-arc variations and diversity within magma chambers feeding the Higashi-Izu Monogenetic Field, Izu Peninsula, Japan,” Geochem., Geophys., Geosyst. 13 (Q09012), 1–28 (2012).

    Article  Google Scholar 

  • Yu. N. Nikolaev, V. Yu. Prokof’ev, A. V. Apletalin, E. A. Vlasov, I. A. Baksheev, I. A. Kal’ko, and Ya. Komarova, “Gold–telluride mineralization of the western Chukchi Peninsula, Russia: mineralogy, geochemistry, and formation conditions,” Geol. Ore Deposits 55 (2), 96–124 2013.

    Article  Google Scholar 

  • Y. Niu and R. Batiza, “Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle,” Earth Planet. Sci. Lett. 148, 471–483 1997.

    Article  Google Scholar 

  • Y. Niu, K. D. Collerson, R. Batiza, J. I. Wendt, and M. Regelous, “Origin of enriched-type mid-ocean ridge basalt at ridges far from mantle plumes: the East Pacific Rise at 11°20', N,” J. Geophys. Res. 104 (B4), 7067–7087 (1999).

    Article  Google Scholar 

  • M. D. Norman, M. O. Garcia, V. S. Kamenetsky, and R. L. Nielsen, “Olivine-hosted melt inclusions in Hawaiian picrites: equilibration, melting, and plume source characteristics,” Chem. Geol. 183, 143–168 2002.

    Article  Google Scholar 

  • A. S. Pamukcu, T. L. Carley, G. A. R. Gualda, C. F. Miller, and C. A. Ferguson, “The evolution of the Peach Spring giant magma body: Evidence from Accessory mineral textures and compositions, bulk pumice and glass geochemistry, and rhyolite-MELTS modeling,” J. Petrol. 54 (6), 1109–1148 2013.

    Article  Google Scholar 

  • D. W. Peate, T. F. Kokfelt, C. J. Hawkesworth, P. W. van Calsteren, J. M. Hergt, and J. A. Pearce, “U-series isotope data on Lau Basin glasses: the role of subductionrelated fluids during melt generation in back-arc basins,” J. Petrol. 42, 1449–1470 2001.

    Article  Google Scholar 

  • C. J. Pritchard and P. B. Larson, “Genesis of post-caldera eastern Upper Basin Member rhyolites, Yellowstone, WY: from volcanic stratigraphy, geochemistry, and radiogenic isotope modeling,” Contrib. Mineral. Petrol. 164, 205–228 2012.

    Article  Google Scholar 

  • V. Yu. Prokofiev and S. L. Selector, “Fluid inclusion evidence for barbotage and its role in gold deposition at the Darasun goldfield (eastern Transbaykalia, Russia),” Cent. Eur. J. Geosci. 6 (2), 131–138 2014.

    Google Scholar 

  • D. Ray, S. Mistra, and R. Banerjee, “Geochemical variability of MORBs along slow to intermediate spreading Carlsberg-Central Indian Ridge, Indian Ocean,” J. Asian Earth Sci. 70–71, 125–141 2013.

    Article  Google Scholar 

  • A. Renzulli, G. Serri, P. Santi, M. Mattioli, and P. M. Holm, “Origin of high-silica liquids at Stromboli volcano (Aeolian Islands, Italy) inferred from crustal xenoliths,” Bull. Volcanol. 62, 400–419 2001.

    Article  Google Scholar 

  • E. Rodder, Fluid Inclusions (Mineral Soc. Am., Washington, 1984), Vol. 1.

    Google Scholar 

  • Yu. G. Safonov and V. Yu. Prokof’ev, “Gold-Bearing reefs of the Witwatersrand basin: a model of synsedimentation hydrothermal formation,” Geol. Ore Deposits 48 (6), 415–447 2006.

    Article  Google Scholar 

  • K. E. Saunders, J. A. Baker, and R. J. Wysoczanski, “Microanalysis of large silicic magma in continental and oceanic arcs: Melt inclusions in Taupo Volcanic Zone and Kermadec Arc rocks, South West Pacific,” J. Volcanol. Geotherm. Res. 190, 203–218 2010.

    Article  Google Scholar 

  • W. B. W. Schnurr, R. B. Trumbull, J. Clavero, K. Hahne, W. Siebel, and M. Gardeweg, “Twenty-five million years of silicic volcanism in the southern central volcanic zone of the Andes: Geochemistry and magma genesis of ignimbrites from 25 to 27° S, 67 to 72° W,” J. Volcanol. Geotherm. Res. 166, 17-46 (2007).

    Article  Google Scholar 

  • O. Sigmarsson, D. Laporte, M. Carpentier, B. Devouard, J.-L. Devidal, and J. Marti, “Formation of U-depleted rhyolite from a basanite at El Hierro, Canary Islands,” Contrib. Mineral. Petrol. 165, 601–622 2013.

    Article  Google Scholar 

  • V. A. Simonov, S. V. Kovyazin, A. A. Peive, and Yu. P. Kolmogorov, “Geochemical characteristics of magmatic systems in the region of the Sierra Leone Fracture Zone, Central Atlantic: evidence from melt inclusions,” Geochem. Int. 43 (7), 682–693 2005.

    Google Scholar 

  • J. M. Sinton, L. L. Ford, B. Chappell, and M. T. McCulloch, “Magma genesis and mantle heterogeneity in the Manus back-arc basin, Papua New Guinea,” J. Petrol. 44, 159–195 2003.

    Article  Google Scholar 

  • W. Sun, Y. Hu, V. S. Kamenetsky, S. M. Eggins, M. Chen, and R. J. Arculus, “Constancy of Nb/U in the mantle revisited,” Geochim. Cosmochim. Acta 72, 3542–3549 2008.

    Article  Google Scholar 

  • Y. Sun, Y. Lai, J. Chen, Q. H. Shu, and C. Yan, “Rare earth and rare metal elements mobility and mineralization during magmatic and fluid evolution in alkaline granite system: evidence from fluid and melt inclusions in Baerzhe granite, China,” Res. Geol. 63, 239–261 2013.

    Article  Google Scholar 

  • N. M. Sushchevskaya, V. S. Kamenetsky, K. G. Murav’ev, T. I. Tsekhonya, G. A. Cherkashov, and B. V. Belyatsky, “Tholeitic magmas within the Mid-Atlantic Ridge segments at 25–30° N: Composition, generation conditions, and relation to modern ore formation,” Geochem. Int. 38 (Suppl. 1), S3–S19 (2000).

    Google Scholar 

  • N. M. Sushchevskaya, E. Bonatti, A. A. Peive, V. S. Kamenetskii, B. V. Belyatsky, T. I. Tsekhonya, and N. N. Kononkova, “Heterogeneity of rift magmatism in the equatorial province of the Mid-Atlantic Ridge (15° N to 3° S),” Geochem. Int. 40 (1), 26–50 2002.

    Google Scholar 

  • N. M. Sushchevskaya, N. A. Migdisova, B. V. Belyatsky, and A. A. Peyve, “Genesis of enriched tholeiitic magmas in the western segment of the Southwest Indian Ridge, South Atlantic Ocean,” Geochem. Int. 41 (1), 1–21 2003.

    Google Scholar 

  • S. R. Taylor, and S. M. McLennan, Continental Crust: its Composition and Evolution (Blackwell, London, 1985)

    Google Scholar 

  • C. Timm, K. Hoernle, R. Werner, F. Hauff, P. van den Bogaard, P. Michael, M. F. Coffin, and A. Koppers, “Age and geochemistry of the oceanic Manihiki Plateau, SW Pacific: new evidence for a plume origin,” Earth Planet. Sci. Lett. 304, 135–146 2011.

    Article  Google Scholar 

  • C. Timm, C. E. J. de Ronde, M. I. Leybourne, D. Layton-Matthews, and I. J. Graham, “Sources of chalcophile and siderophile elements in Kermadec arc lavas,” Econ. Geol. 107 (8), 1527–1538 2012.

    Article  Google Scholar 

  • E. Tomlinson, I. De Schriver, K. De Corte, A. P. Jones, L.Moens, and F. Vanhaecke, “Trace element compositions of submicroscopic inclusions in coated diamond: A tool for understanding diamond petrogenesis,” Geochim. Cosmochim. Acta 69 (19), 4719–4732 2005.

    Article  Google Scholar 

  • S. Turner, J. Caulfield, T. Rushmer, M. Turner, S. Cronin, I. Smith, and H. Handley, “Magma evolution in the primitive, intra-oceanic Tonga arc: rapid petrogenesis of dacites at Fonualei volcano,” J. Petrol. 53, 1231–1253 2012.

    Article  Google Scholar 

  • O. V. Vershkovskaya, V. S. Krasnova, and V. S. Saltykova, Gallium (AN SSSR, Moscow, 1961) [in Russian]

    Google Scholar 

  • I. V. Vikent’ev, A. Yu. Borisova, V. S. Karpukhina, V. B. Naumov, and I. D. Ryabchikov, “Direct data on the ore potential of acid magmas of the Uzel’ginskoe ore field (Southern Urals, Russia),” Dokl. Earth Sci. 443 (1), 401–405 2012.

    Article  Google Scholar 

  • A. V. Volkov, A. A. Sidorov, and V. Yu. Prokof’ev, “Roots of epithermal gold–silver deposits,” in Role of Mineralogy in Understanding the Mineral Formation (IGEM RAN, Moscow, 2008) [in Russian].

    Google Scholar 

  • V. D. Wanless, M. R. Perfit, W. I. Ridley, and E. Klein, “Dacite petrogenesis on Mid-Ocean Ridges: Evidence for oceanic crustal melting and assimilation,” J. Petrol. 51, 2377–2410 2010.

    Article  Google Scholar 

  • C. L. Waters, K. W. W. Sims, M. R. Perfit, J. Blichert-Toft, and J. Blusztajn, “Perspective on the genesis of E-MORB from chemical and isotopic heterogeneity at 9–10° N East Pacific Rise,” J. Petrol. 52, 565–602 2011.

    Article  Google Scholar 

  • J. D. Webster, R. Thomas, D. Rhede, H.-J. Forster, and R. Seltmann, “Melt inclusions in quartz from an evolved peraluminous pegmatite: Geochemical evidence for strong tin enrichment in fluorine-rich and phosphorus-rich residual liquids,” Geochim. Cosmochim. Acta 61 (13), 2589–2604 1997.

    Article  Google Scholar 

  • C. J. N. Wilson, S. Blake, B. L. A. Charlier, and A. N. Sutton, “The 26.5 ka Oruanui eruption, Taupo volcano, New Zealand: Development characteristics and evacuation of a large rhyolitic magma body,” J. Petrol. 47, 35–69 2006.

    Article  Google Scholar 

  • R. K. Workman, S. R. Hart, M. Jackson, M. Regelous, K. A. Farley, J. Blusztajn, M. Kurz, and H. Staudigel, “Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member: Evidence from the Samoan volcanic chain,” Geochem., Geophys., Geosyst. 5, 1–44 2004.

    Article  Google Scholar 

  • R. J. Wysoczanski, M. R. Handler, C. I. Schipper, M. I. Leybourne, J. Creech, M. D. Rotella, A. R. I. Nichols, C. J. N. Wilson, and R. B. Stewart, “The tectonomagmatic source of ore metals and volatile elements in Southern Kermadec,” Arc. Econ. Geol. 107 (8), 1539–1556 2012.

    Article  Google Scholar 

  • G. M. Yaxley, V. S. Kamenetsky, M. Kamenetsky, M. D. Norman, and D. Francis, “Origins of compositional heterogeneity in olivine-hosted melt inclusions from the Baffin Island picrites,” Contrib. Mineral. Petrol. 148, 426–442 2004.

    Article  Google Scholar 

  • K. Zaw, F. L. Sutherland, F. Dellapasqua, C. G. Ryan, T. F. Yui, T. P. Mernagh, and D. Duncan, “Contrasts in gem corundum characteristics, eastern Australian basaltic fields: trace elements, fluid/melt inclusions and oxygen isotopes,” Mineral. Mag. 70 (6), 669–687 2006.

    Article  Google Scholar 

  • D. A. Zedgenizov, S. Rege, W. L. Griffin, H. Kagi, and V. S. Shatsky, “Composition of trapped fluids in cuboid fibrous diamonds from the Udachnaya kimberlite: LAM-ICPMS analysis,” Chem.Geol. 240, 151–162 2007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Prokof’ev.

Additional information

Original Russian Text © V.Yu. Prokof’ev, V.B. Naumov, V.A. Dorofeeva, 2016, published in Geokhimiya, 2016, No. 8, pp. 718–733.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokof’ev, V.Y., Naumov, V.B. & Dorofeeva, V.A. Gallium concentration in natural melts and fluids. Geochem. Int. 54, 691–705 (2016). https://doi.org/10.1134/S0016702916080097

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702916080097

Keywords

Navigation