Skip to main content
Log in

Ground-Truth Experiments for the Calibration and Validation of Satellite Microwave Radiometer Data

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

Ground-truth experiments are needed to calibrate and validate satellite microwave data and to improve the quality and utilization efficiency of satellite data in solving problems of hydrometeorological support. This paper considers the arrangement of specialized test observatories in the satellite data validation subsystem exemplified by the geophysical observatory in Lehtusi (a town in Leningrad oblast), describes the state and prospects of its equipping with modern tools of contact and remote measurements of meteorological parameters, and indicates directions of scientific research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Shchukin, G.G., Problems, present state, and prospects of subsatellite observations, in Sbornik dokladov AN GDR (Proceedings of the GDR Academy of Sciences), Berlin: Priroda-Interkosmos, 1989, pp. 44–68.

  2. Basharinov, A.E., Gurvich, A.S., and Egorov, S.T., Radioizluchenie Zemli kak planety (Radiothermal Emission of the Earth as a Planet), Moscow: Nauka, 1974.

  3. Shifrin, K.S., Rabinovich, Yu.I., and Shchukin, G.G., Study of the microwave radiation field in the atmosphere, Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 1968, no. 222, pp. 5–18.

  4. Sovetsko–amerikanskii eksperiment “Bering” (The Soviet–American Experiment “Bering”), Kondrat’ev, K.Ya, Rabinovich, Yu.I, and Nordberg, V., Eds., Leningrad: Gidrometeoizdat, 1975.

  5. Stepanenko, V.D. and Rabinovich, Yu.I., The SAMEX complex experiment, Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 1980, no. 422, pp. 3–6.

  6. Stepanenko, V.D., Shchukin, G.G., Bobylev, L.P., and Matrosov, S.Yu., Radioteplolokatsiya v meteorologii (Radio Thermal Location in Meteorology), Leningrad: Gidrometeoizdat, 1987.

  7. Kosmicheskii kompleks gidrometeorologicheskogo i okeanograficheskogo obespecheniya “Meteor-3M” s kosmicheskim apparatom “Meteor-M” no. 1 (The Meteor-3M Space System for Hydrometeorological and Oceanographic Support with Meteor-M no. 1 Spacecraft), Makridenko, L.A., Volkov, S.N., Trifonov, Yu.V., , Eds., NPP VNIIEM, 2009.

    Google Scholar 

  8. Obraztsov. S.P. and Shchukin. G.G.. Determination of temperature–humidity characteristics of the atmosphere and underlying surface according to satellite and microwave radiometry data, Meteorol. Uch. Zap., 2006, no. 3, pp. 28–45.

  9. Karavaev, D.M., Kuleshov, Yu.V., Lebedev, A.B., et al., Analysis of the potential efficiency of satellite microwave radiometers, in Voprosy elektromekhaniki, Trudy VNIIEM (Problems of Electrical Engineering: Proceedings of VNIIEM), Moscow: VNIIEM, 2016, pp. 193–199.

  10. Karavaev, D.M., Kuleshov, Yu.V., Shchukin, G.G., and Uspenskii, A.B., Validation of data products from microwave satellite radiometry, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2014, vol. 11, no. 3, pp. 259–267.

    Google Scholar 

  11. Mitnik, L.M. and Mitnik, M.L., Calibration and validation as necessary components of microwave radiometry in measurement by satellites of Meteor-M no. 2 series, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2016, vol. 13, no. 1, pp. 95–104.

    Article  Google Scholar 

  12. Mitnik, M.L. and Mitnik, L.M., Recovery of vapor content in the atmosphere and cloud water content over the ocean according to data of microwave sensing from DMSP, TRMM, AQUA, and ADEOS-II satellites, Issled. Zemli Kosmosa, 2006, no. 4, pp. 34–41.

  13. Boldyrev, V.V., Gorobets, N.N., Il’gasov, P.A., et al., The MTVZA-GYa satellite microwave scanner/sounder, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2008, vol. 5, no. 1, pp. 243–248.

    Google Scholar 

  14. Uspenskii, A.B., Current state and prospects of remote temperature–humidity sensing of the Earth’s atmosphere, Issled. Zemli Kosmosa, 2010, no. 2, pp. 26–36.

  15. Uspenskii, A.B., Kramchaninova, E.K., Kostsov, V.S., et al., Development of a system of external calibration and validation of measurements by the microwave radiometer MTVZA-GYa of Meteor-M no. 2 satellite, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2017, vol. 14, no. 4, pp. 27–35.

    Article  Google Scholar 

  16. Sharkov, E.A., Remote investigations of atmospheric catastrophes, Issled. Zemli Kosmosa, 2010, no. 1, pp. 52–68.

  17. Shchukin, G.G., Chichkova, E.F., and Karavaev, D.M., Validation satellite data on temperature–humidity sounding of the atmosphere for the northwestern region of the Russian Federation, Metody Ustroistva Peredachi Obrab. Inf., 2013, no. 15, pp. 42–45.

  18. Bogorodskii, V.V., Kozlov, A.I., and Tuchkov, L.T., Radioteplovoe izluchenie zemnykh pokrovov (Radiothermal Emission of the Earth’s Covers), Leningrad: Gidrometeoizdat, 1977.

  19. Asmus, V.V., Zagrebaev, V.A., Makridenko, L.A., et al., Meteorological satellites based on Meteor-M polar orbiting platform, Russ. Meteorol. Hydrol., 2014, vol. 39, no. 12, pp. 787–794.

    Article  Google Scholar 

  20. Gayfulin, D.R., Tsyrulnikov, M.D., Uspensky, A.B., et al., The usage of MTVZA-GYa satellite microwave radiometer observations in the data assimilation system of the Hydrometcenter of Russia, Russ. Meteorol. Hydrol., 2017, vol. 42, no. 9, pp. 564–573.

    Article  Google Scholar 

  21. Kroodsma, R.A., McKague, D.S., and Ruf, C.S., Vicarious cold calibration for conical scanning microwave imagers, IEEE Trans. Geosci. Remote Sens., 2017, vol. 55, no. 2, pp. 816–827.

    Article  ADS  Google Scholar 

  22. Berg, W., Bilanow, S., Chen, R., et al., Intercalibration of the GPM radiometer constellation, J. Atmos. Oceanic Technol., 2016, vol. 33, no. 12, pp. 2639–2654.

    Article  ADS  Google Scholar 

  23. Gotyur, I.A., Kuleshov, Yu.V., Makov, A.B., et al., A technology of forecasting weather conditions for space rocket launching at the Vostochnyi cosmodrome using the automatic meteorological system data, Russ. Meteorol. Hydrol., 2015, vol. 40, no. 11, pp. 758–765.

    Article  Google Scholar 

  24. Li, J., Wolf, W., and Menzel, P., Global soundings of the atmosphere from ATOVS measurements: The algorithm and validation, J. Appl. Meteorol., 2000, vol. 39, no. 8, pp. 1248–1268.

    Article  ADS  Google Scholar 

  25. Polyakov, A.V., The method of artificial neural networks on retrieving vertical profiles of atmospheric parameters, Atmos. Oceanic Opt., 2014, vol. 27, no. 3, pp. 247–252.

    Article  Google Scholar 

  26. Polyakov, A.V., Timofeev, Yu.M., and Virolainen, Ya.A., Using artificial neural networks in the temperature and humidity sounding of the atmosphere, Izv., Atmos. Ocean. Phys., 2014, vol. 50, no. 3, pp. 330–336.

    Article  Google Scholar 

  27. Weng, F., Zou, X., Sun, N., et al., Calibration of Suomi National Polar-orbiting Partnership (NPP) Advanced Technology Microwave Sounder (ATMS), J. Geophys. Res. Atmos, 2013, vol. 118, pp. 1–14.

    Article  Google Scholar 

  28. Weng, F. and Yang, H., Validation of ATMS calibration accuracy using Suomi NPP pitch maneuver observations, Remote Sens., 2016, vol. 8, no. 4, id 332.

  29. John, V.O., Allan, R.P., Bell, W., et al., Assessment of inter-calibration methods for satellite microwave humidity sounders, J. Geophys. Res.: Atmos., 2013, vol. 118, no. 10, pp. 4906–4918.

    Article  ADS  Google Scholar 

  30. Zou, X., Lin, L., and Weng, F., Absolute calibration of ATMS upper level temperature sounding channels using GPS RO observations, IEEE Trans. Geosci. Remote Sens., 2014, vol. 52, no. 2, pp. 1397–1406.

    Article  ADS  Google Scholar 

  31. Brogniez, H., English, S., Mahfouf, J.F., et al., A review of sources of systematic errors and uncertainties in observations and simulations at 183 GHz, Atmos. Meas. Tech., 2016, no. 9, pp. 2207–2221.

  32. Dirksen, R.J., Sommer, M., Immler, F.J., et al., Reference quality upper-air measurements: GRUAN data processing for the Vaisala RS92 radiosonde, Atmos. Meas. Tech., 2014, no. 7, pp. 4463–4490.

  33. Wentz, F.J., A well-calibrated ocean algorithm for special sensor microwave/imager, J. Geophys. Res., 1997, vol. 102, no. C4, pp. 8703–8718.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Karavaev.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karavaev, D.M., Kuleshov, Y.V., Lebedev, A.B. et al. Ground-Truth Experiments for the Calibration and Validation of Satellite Microwave Radiometer Data. Cosmic Res 58, 365–371 (2020). https://doi.org/10.1134/S0010952520050032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952520050032

Navigation