Skip to main content

The GPM Ground Validation Program

  • Chapter
  • First Online:
Satellite Precipitation Measurement

Part of the book series: Advances in Global Change Research ((AGLO,volume 69))

Abstract

We present a detailed overview of the structure and activities associated with the NASA-led ground-validation component of the NASA-JAXA Global Precipitation Measurement (GPM) mission. The overarching philosophy and approaches for NASA’s GV program are presented with primary focus placed on aspects of direct validation and a summary of physical validation campaigns and results. We describe a spectrum of key instruments, methods, field campaigns and data products developed and used by NASA’s GV team to verify GPM level-2 precipitation products in rain and snow. We describe the tools and analysis framework used to confirm that NASA’s Level-1 science requirements for GPM are met by the GPM Core Observatory. Examples of routine validation activities related to verification of Integrated Multi-satellitE Retrievals for GPM (IMERG) products for two different regions of the globe (Korea and the US) are provided, and a brief analysis related to IMERG performance in the extreme rainfall event associated with Hurricane Florence is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amitai, E., Petersen, W. A., Llort, X., & Vasilof, S. (2012). Multi-platform comparisons of rain intensity for extreme precipitation events. IEEE Transactions on Geoscience and Remote Sensing, 50, 675–686. https://doi.org/10.1109/TGRS.2011.2162737.

    Article  Google Scholar 

  • Battaglia, A., Tanelli, S., Heymsfield, G. M., & Tian, L. (2014). The dual wavelength ratio knee: A signature of multiple scattering in airborne Ku–Ka observations. Journal of Applied Meteorology and Climatology, 53, 1790–1808. https://doi.org/10.1175/JAMC-D-13-0341.1.

    Article  Google Scholar 

  • Battaglia, A., Mroz, K., Lang, T., Tridon, F., Tanelli, S., Tian, L., & Heymsfield, G. M. (2016). Using a multiwavelength suite of microwave instruments to investigate the microphysical structure of deep convective cores. Journal of Geophysical Research, 121, 9356–9381. https://doi.org/10.1002/2016JD025269.

    Article  Google Scholar 

  • Bolen, S., & Chandrasekar, V. (2003). Methodology for aligning and comparing spaceborne radar and ground-based radar observations. Journal of Atmospheric and Oceanic Technology, 20, 647–659. https://doi.org/10.1175/1520-0426(2003)20<647:MFAACS>2.0.CO;2.

    Article  Google Scholar 

  • Brandes, E. A., Zhang, G., & Vivekanandan, J. (2004). Drop size distribution retrieval with polarimetric radar: Model and application. Journal of Applied Meteorology, 43, 461–475. https://doi.org/10.1175/1520-0450(2004)043<0461:DSDRWP>2.0.CO;2.

    Article  Google Scholar 

  • Bringi, V. N., Tang, T., & Chandrasekar, V. (2004). Evaluation of a new polarimetrically based Z–R relation. Journal of Atmospheric and Oceanic Technology, 21, 612–623. https://doi.org/10.1175/1520-0426(2004)021<0612:EOANPB>2.0.CO;2.

    Article  Google Scholar 

  • Bringi, V. N., Thurai, M., Tolstoy, L., & Petersen, W. A. (2015). Estimation of spatial correlation of rain drop size distribution parameters and rain rate using NASA’s S-band polarimetric radar and 2D-video disdrometer network: Two case studies from MC3E. Journal of Hydrometeorology, 16, 1207–1221. https://doi.org/10.1175/JHM-D-14-0204.1.

    Article  Google Scholar 

  • Bukovčić, P., Ryzhkov, A., Zrnić, D., & Zhang, G. (2018). Polarimetric radar relations for quantification of snow based on disdrometer data. Journal of Applied Meteorology and Climatology, 57, 103–121. https://doi.org/10.1175/JAMC-D-17-0090.1.

    Article  Google Scholar 

  • Chandrasekar, V., Hou, A. Y., Smith, E. A., Bringi, V. N., Rutledge, S. A., Gorgucci, E., Petersen, W. A., & Skofronick-Jackson, G. (2008). Potential role of dual-polarization radars in the validation of satellite precipitation measurements: Rationale and opportunities. Bulletin of the American Meteorological Society, 89, 1127–1145. https://doi.org/10.1175/2008BAMS2177.1.

    Article  Google Scholar 

  • Chase, R., Finlon, J. A., Borque, P., McFarquhar, G. M., Nesbitt, S. W., Tanelli, S., Sy, O. O., Durden, S. L., & Poellot, M. R. (2018). Evaluation of triple-frequency radar retrieval of snowfall properties using coincident airborne in-situ observations during OLYMPEX. Geophysical Research Letters, 45, 5752–5760. https://doi.org/10.1029/2018GL077997.

    Article  Google Scholar 

  • Chen, S., Hong, Y., Kulie, M., Behrangi, A., Stepanian, P. M., Cao, Q., You, Y., Zhang, J., Hu, J., & Zhang, X. (2016). Comparison of snowfall estimates from the NASA CloudSat Cloud Profiling Radar and NOAA/NSSL Multi-Radar Multi-Sensor System. Journal of Hydrology, 541, 862–872. https://doi.org/10.1016/j.jhydrol.2016.07.047.

    Article  Google Scholar 

  • Chen, H., Chandrasekar, V., & Bechini, R. (2017). An improved dual-polarization radar rainfall algorithm (DROPS2.0): Application in NASA IFloodS field campaign. Journal of Hydrometeorology, 18, 917–937. https://doi.org/10.1175/JHM-D-16-0124.1.

    Article  Google Scholar 

  • Cifelli, R. C., Chandrasekar, V., Lim, S., Kennedy, P. C., Wang, Y., & Rutledge, S. A. (2011). A new dual-polarization radar rainfall algorithm: Application in Colorado precipitation events. Journal of Atmospheric and Oceanic Technology, 28, 352–364. https://doi.org/10.1175/2010JTECHA1488.1.

    Article  Google Scholar 

  • Colle, B. A., Naeger, A. R., & Molthan, A. (2017). Structure and evolution of a warm frontal precipitation band during the GPM Cold Season Precipitation Experiment (GCPEx). Monthly Weather Review, 145, 473–493. https://doi.org/10.1175/MWR-D-16-0072.1.

    Article  Google Scholar 

  • Dezfuli, A. K., Ichoku, C. M., Huffman, G. J., Mohr, K. I., Selker, J. S., van de Giesen, N., Hochreutener, R., & Annor, F. O. (2017). Validation of IMERG precipitation in Africa. Journal of Hydrometeorology, 18, 2817–2825. https://doi.org/10.1175/JHM-D-17-0139.1.

    Article  Google Scholar 

  • Dolan, B., & Rutledge, S. A. (2009). A theory-based hydrometeor identification algorithm for X-band polarimetric radars. Journal of Atmospheric and Oceanic Technology, 26, 2071–2088. https://doi.org/10.1175/2009JTECHA1208.1.

    Article  Google Scholar 

  • Dolan, B., Fuchs, B., Rutledge, S. A., Barnes, E. A., & Thompson, E. J. (2018). Primary modes of global drop size distributions. Journal of the Atmospheric Sciences, 75, 1453–1476. https://doi.org/10.1175/JAS-D-17-0242.1.

    Article  Google Scholar 

  • Gatlin, P., Bringi, V. N., Thurai, M., Petersen, W. A., Wolff, D. B., Tokay, A., Carey, L. D., & Wingo, M. (2015). Searching for large raindrops: A global summary of two-dimensional video disdrometer observations. Journal of Applied Meteorology and Climatology, 54, 1059–1069. https://doi.org/10.1175/JAMC-D-14-0089.1.

    Article  Google Scholar 

  • Gerlach, J., & Petersen, W. A. (2011). NPOL: The NASA transportable S-band dual-polarimetric Radar. Antenna system upgrades, performance and deployment during MC3E. In Preparation of 35th Conference Radar Meteorology, AMS, 25–30 September, Pittsburgh, PA, USA. Available at https://ams.confex.com/ams/35Radar/webprogram/Paper191918.html. Last accessed 29 Nov 2018.

  • Grecu, M., Olson, W. S., Munchak, S. J., Ringerud, S., Liao, L., Haddad, Z. S., Kelley, B. L., & McLaughlin, S. F. (2016). The GPM combined algorithm. Journal of Atmospheric and Oceanic Technology, 33, 2225–2245. https://doi.org/10.1175/JTECH-D-16-0019.1.

    Article  Google Scholar 

  • Guilloteau, C., Foufoula-Georgiou, E., Kummerow, C., & Petković, V. (2018). Resolving surface rain from GMI high-frequency channels: Limits imposed by the three-dimensional structure of precipitation. Journal of Atmospheric and Oceanic Technology, 35. https://doi.org/10.1175/JTECH-D-18-0011.1.

  • Heymsfield, G. M., Tian, L., Li, L., McLinden, M., & Cervantes, J. I. (2014). Airborne radar observations of severe hailstorms: Implications for future spaceborne radar. Journal of Applied Meteorology and Climatology, 52, 1851–1867. https://doi.org/10.1175/JAMC-D-12-0144.1.

    Article  Google Scholar 

  • Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., Oki, R., Nakamura, K., & Iguchi, T. (2014). The global precipitation measurement mission. Bulletin of the American Meteorological Society, 95, 701–722. https://doi.org/10.1175/BAMS-D-13-00164.1.

    Article  Google Scholar 

  • Houze, R. A., McMurdie, L., Petersen, W. A., Schwaller, M. R., Baccus, W., Lundquist, J. D., Mass, C. F., Nijssen, B., Rutledge, S. A., Hudak, D. R., Tanelli, S., Mace, G. G., Poellot, M. R., Lettenmaier, D. P., Zagrodnik, J. P., Rowe, A. K., DeHart, J. C., Madaus, L. E., Barnes, H. C., & Chandrasekar, V. (2017). The Olympic Mountains Experiment (OLYMPEX). Bulletin of the American Meteorological Society, 98, 2167–2188. https://doi.org/10.1175/BAMS-D-16-0182.1.

    Article  Google Scholar 

  • Huang, G., Bringi, V. N., Moisseev, D., Petersen, W. A., Bliven, L., & Hudak, D. (2015). Use of 2D-video disdrometer to derive mean density-size and Ze-SR relations: Four snow cases from the light precipitation validation experiment. Atmospheric Research, 153, 34–48. https://doi.org/10.1016/j.atmosres.2014.07.013.

    Article  Google Scholar 

  • Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R., Kidd, C., Nelkin, E., Sorooshian, S., Tan, J., & Xie, P. (2018). NASA Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG) algorithm theoretical basis Doc. version 5.2. NASA GSFC, 30 pp. Available at https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V5.2.pdf. Last accessed 18 Nov 2018.

  • Iguchi, T., Matsui, T., Tao, W.-K., Khain, A. P., Phillips, V. T. J., Kidd, C., L’Ecuyer, T., Braun, S. A., & Hou, A. Y. (2014). WRF–SBM simulations of melting-layer structure in mixed-phase: Precipitation events observed during LPVEx. Journal of Applied Meteorology and Climatology, 53, 2710–2731. https://doi.org/10.1175/JAMC-D-13-0334.1.

    Article  Google Scholar 

  • Jensen, M., Petersen, W. A., Bansemer, A., Bharadwaj, N., Carey, L. D., Cecil, D. J., Collis, S. M., Del Genio, A. D., Dolan, B., Gerlach, J., Giangrande, S. E., Heymsfield, A., Heymsfield, G., Kollias, P., Lang, T. J., Nesbitt, S. W., Neumann, A., Poellot, M., Rutledge, S. A., Schwaller, M., Tokay, A., Williams, C. R., Wolff, D. B., Xie, S., & Zipser, E. J. (2016). The Midlatitude continental convective clouds experiment (MC3E). Bulletin of the American Meteorological Society, 97, 1667–1686. https://doi.org/10.1175/BAMS-D-14-00228.1.

    Article  Google Scholar 

  • Kidd, C., Tan, J., Kirstetter, P., & Petersen, W. A. (2018). Validation of the version 05 precipitation products from the GPM Core Observatory and constellation satellite sensors. Quarterly Journal of the Royal Meteorological Society, 144(S1), 313–328. https://doi.org/10.1002/qj.3175.

    Article  Google Scholar 

  • Kirchengast, G., Kabas, T., Leuprecht, A., Bichler, C., & Truhetz, H. (2014). WegenerNet – A pioneering high-resolution network for monitoring weather and climate. Bulletin of the American Meteorological Society, 95, 227–242. https://doi.org/10.1175/BAMS-D-11-00161.1.

    Article  Google Scholar 

  • Kirstetter, P.-E., Hong, Y., Gourley, J. J., Chen, S., Flamig, Z., Zhang, J., Schwaller, M., Petersen, W. A., & Amitai, E. (2012). Toward a framework for systematic error modeling of spaceborne precipitation radar with NOAA/NSSL ground radar-based National Mosaic QPE. Journal of Hydrometeorology, 13, 1285–1300. https://doi.org/10.1175/JHM-D-11-0139.1.

    Article  Google Scholar 

  • Kirstetter, P.-E., Hong, Y., Gourley, J. J., Cao, Q., Schwaller, M., & Petersen, W. A. (2014). A research framework to bridge from the global precipitation measurement mission core satellite to the constellation sensors using ground radar-based National Mosaic QPE. In L. Venkataraman (Ed.), Remote sensing of the terrestrial water cycle (AGU books geophysical monograph series, Chapman monograph on remote sensing). Hoboken: Wiley. ISBN: 1118872037.

    Google Scholar 

  • Kirstetter, P.-E., Gourley, J. J., Hong, Y., Zhang, J., Moazamigoodarzi, S., Langston, C., & Arthur, A. (2015a). Probabilistic precipitation rate estimates with ground-based radar networks. Water Resources Research, 51, 1422–1442. https://doi.org/10.1002/2014WR015672.

    Article  Google Scholar 

  • Kirstetter, P.-E., Hong, Y., Gourley, J. J., Schwaller, M., Petersen, W. A., & Cao, Q. (2015b). Impact of sub-pixel rainfall variability on spaceborne precipitation estimation: Evaluating the TRMM 2A25 product. Quarterly Journal of the Royal Meteorological Society, 141, 953–966. https://doi.org/10.1002/qj.2416.

    Article  Google Scholar 

  • Kneifel, S., von Lerber, A., Tiira, J., Moisseev, D., Kollias, P., & Leinonen, J. (2015). Observed relations between snowfall microphysics and triple-frequency radar measurements: Triple frequency signatures of snowfall. Journal of Geophysical Research, 120, 6034–6055. https://doi.org/10.1002/2015JD023156.

    Article  Google Scholar 

  • Kummerow, C. D., Randel, D. L., Kulie, M., Wang, N.-Y., Ferraro, R., Munchak, S. J., & Petkovic, V. (2015). The evolution of the Goddard profiling algorithm to a fully parametric scheme. Journal of Atmospheric and Oceanic Technology, 32, 2265–2280. https://doi.org/10.1175/JTECH-D-15-0039.1.

    Article  Google Scholar 

  • Lang, S., Tao, W.-K., Chern, J., Wu, D., & Li, X. (2014). Benefits of a 4th ice class in the simulated radar reflectivities of convective systems using a bulk microphysics scheme. Journal of the Atmospheric Sciences, 71, 3583–3612. https://doi.org/10.1175/JAS-D-13-0330.1.

    Article  Google Scholar 

  • Leinonen, J., Lebsock, M. D., Tanelli, S., Sy, O. O., Dolan, B., Chase, R. J., Finlon, J. A., von Lerber, A., & Moisseev, D. (2018). Retrieval of snowflake microphysical properties from multi-frequency radar observations. Atmospheric Measurement Techniques, 11, 5471–5488. https://doi.org/10.5194/amt-2018-73.

    Article  Google Scholar 

  • Leppert, K. D., & Cecil, D. J. (2015). Signatures of hydrometeor species from airborne passive microwave data for frequencies 10–183 GHz. Journal of Applied Meteorology and Climatology, 54, 1313–1334. https://doi.org/10.1175/JAMC-D-14-0145.1.

    Article  Google Scholar 

  • Liao, L., Meneghini, R., & Tokay, A. (2014). Uncertainties of GPM DPR rain estimates caused by DSD parameterizations. Journal of Applied Meteorology and Climatology, 53, 2524–2537. https://doi.org/10.1175/JAMC-D-14-0003.1.

    Article  Google Scholar 

  • Liao, L., Meneghini, R., Tokay, A., & Bliven, L. F. (2016). Retrieval of snow properties from Ku- and Ka-band dual-frequency radar. Journal of Applied Meteorology and Climatology, 55, 1845–1858. https://doi.org/10.1175/JAMC-D-15-0355.1.

    Article  Google Scholar 

  • Louf, V., Protat, A., Warren, R. A., Collis, S. M., Wolff, D. B., Raunyiar, S., Jakob, C., & Petersen, W. A. (2018). An integrated approach to weather radar calibration and monitoring using ground clutter and satellite comparisons. Journal of Atmospheric and Oceanic Technology, 36, 17–39. https://doi.org/10.1175/JTECH-D-18-0007.1.

    Article  Google Scholar 

  • Marks, D., & Wolff, D. B. (2011). Quality control and calibration of the dual-polarization radar at Kwajalein, RMI. Journal of Atmospheric and Oceanic Technology, 28, 181–196. https://doi.org/10.1175/2010JTECHA1462.1.

    Article  Google Scholar 

  • Marks, D., Wolff, D. B., Pabla, C. S., Petersen, W. A., Kirstetter, P. -E., Tokay, A., Pippitt, J. L., & Wang, J. (2017). Evaluation of S-Band radar rain rate retrieval algorithms and precipitation variability over a dense rain gauge network. In Preparation of 38th Conference Radar Meteorology, AMS, 27 Aug–1 Sept, Chicago, IL. Available at https://ams.confex.com/ams/38RADAR/webprogram/Paper320743.html. Last accessed 29 Nov 2018.

  • Matsui, T., Iguchi, T., Li, X., Han, M., Tao, W.-K., Petersen, W. A., L’Ecuyer, T., Meneghini, R., Olson, W., Kummerow, C. D., Hou, A. Y., Schwaller, M. R., Stocker, E. F., & Kwiatkowski, J. (2013). GPM satellite simulator over ground validation sites. Bulletin of the American Meteorological Society, 94, 1653–1660. https://doi.org/10.1175/BAMS-D-12-00160.1.

    Article  Google Scholar 

  • Molthan, A., & Petersen, W. A. (2011). Incorporating ice crystal scattering databases in the simulation of millimeter wavelength radar reflectivity. Journal of Atmospheric and Oceanic Technology, 26, 2257–2269. https://doi.org/10.1175/2010JTECHA1511.1.

    Article  Google Scholar 

  • Newman, A., Kucera, P., & Bliven, L. (2009). Presenting the Snowflake Video Imager (SVI). Journal of Atmospheric and Oceanic Technology, 26, 167–179. https://doi.org/10.1175/2008JTECHA1148.1.

    Article  Google Scholar 

  • O, S., & Kirstetter, P. E. (2017). Evaluation of diurnal variation of GPM IMERG-derived summer precipitation over the contiguous US using MRMS data. Quarterly Journal of the Royal Meteorological Society, 144(S1), 270–281. https://doi.org/10.1002/qj.3218.

  • O, S., Foelsche, U., Kirchengast, G., Fuchsberger, J., Tan, J., & Petersen, W. A. (2017). Evaluation of GPM IMERG early, late, and final rainfall estimates using WegenerNet gauge data in southeastern Austria. Hydrology and Earth System Sciences, 21, 6559–6572. https://doi.org/10.5194/hess-21-6559-2017.

    Article  Google Scholar 

  • Olson, W. S., Tian, L., Grecu, M., Kuo, K.-S., Johnson, B. T., Heymsfield, A. J., Bansemer, A., Heymsfield, G. M., Wang, J. R., & Meneghini, R. (2016). The microwave radiative properties of falling snow derived from nonspherical ice particle models. Part II: Initial testing using radar, radiometer and in situ observations. Journal of Applied Meteorology and Climatology, 55, 709–722. https://doi.org/10.1175/JAMC-D-15-0131.1.

    Article  Google Scholar 

  • Petersen, W. A., Gatlin, P. N., Wolff, D. B., Tokay, A., & Grecu, M. (2018). A radar-based evaluation of GPM retrievals of the rain drop size distribution. In 10th European Conference on Radar in Meteorology and Hydrology (ERAD 2018), 1–6 July, Ede-Wageningen, The Netherlands, https://doi.org/10.18174/454537.

  • Petkovic, V., & Kummerow, C. D. (2017). Understanding the sources of satellite passive microwave rainfall retrieval systematic errors over land. Journal of Applied Meteorology and Climatology, 56, 597–614. https://doi.org/10.1175/JAMC-D-16-0174.1.

    Article  Google Scholar 

  • Pippitt, J., Wolff, D. B., Petersen, W. A., & Marks, D. (2015). Data and operational processing for NASA’s GPM ground validation program. In 37th Conference on radar meteorology, Norman, OK, AMS, [Available at https://ams.confex.com/ams/37RADAR/webprogram/Paper275627.html, last accessed 18 Nov 2018].

  • Rios Gaona, M. F., Overeem, A., Brasjen, A. M., Meirink, J. F., Leijnse, H., & Uijlenhoet, R. (2017). Evaluation of rainfall products derived from satellites and microwave links for The Netherlands. IEEE Transactions on Geoscience and Remote Sensing, 55, 6849–6859. https://doi.org/10.1109/TGRS.2017.2735439.

    Article  Google Scholar 

  • Schwaller, M. R., & Morris, K. R. (2011). A ground validation network for the global precipitation measurement mission. Journal of Atmospheric and Oceanic Technology, 28, 301–319. https://doi.org/10.1175/2010JTECHA1403.1.

    Article  Google Scholar 

  • Seo, B.-C., Krajewski, W. F., Quintero, F., El Saadani, M., Goska, R., Cunha, L. K., Dolan, B., Wolff, D. B., Smith, J. A., Rutledge, S. A., & Petersen, W. A. (2018). Comprehensive evaluation of the IFloodS radar-rainfall products for hydrologic applications. Journal of Hydrometeorology, 19, 1793–1813. https://doi.org/10.1175/JHM-D-18-0080.1.

    Article  Google Scholar 

  • Seto, S., & Iguchi, T. (2015). Intercomparison of attenuation correction methods for the GPM dual-frequency precipitation radar. Journal of Atmospheric and Oceanic Technology, 32, 915–926. https://doi.org/10.1175/JTECH-D-14-00065.1.

    Article  Google Scholar 

  • Shi, R. W.-K., Tao, T., Matsui, R., Cifelli, A. Y., Hou, S., Lang, A., Tokay, N.-Y., Wang, C., Peters-Lidard, G., Skofronick-Jackson, S. R., & Petersen, W. A. (2010). WRF simulations of the 20-22 January 2007 snow events over Eastern Canada: Comparison with in-situ and satellite observations. Journal of Applied Meteorology and Climatology, 49, 2246–2266. https://doi.org/10.1175/2010JAMC2282.1.

    Article  Google Scholar 

  • Skofronick-Jackson, G., Johnson, B. T., & Munchak, S. J. (2013). Detection thresholds of falling snow from satellite-borne active and passive sensors. IEEE Transactions on Geoscience and Remote Sensing, 51, 4177–4189. https://doi.org/10.1109/TGRS.2012.2227763.

    Article  Google Scholar 

  • Skofronick-Jackson, G., Hudak, D., Petersen, W. A., Nesbitt, S. W., Chandrasekar, V., Durden, S., Gleicher, K. J., Huang, G.-J., Joe, P., Kollias, P., Reed, K. A., Schwaller, M. R., Stewart, R., Tanelli, S., Tokay, A., Wang, J. R., & Wolde, M. (2015). Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEx): For measurement sake let it snow. Bulletin of the American Meteorological Society, 96, 1719–1741. https://doi.org/10.1175/BAMS-D-13-00262.1.

    Article  Google Scholar 

  • Skofronick-Jackson, G., Hudak, D., Petersen, W. A., Nesbitt, S. W., Chandrasekar, V., Durden, S., Gleicher, K. J., Huang, G.-J., Joe, P., Kollias, P., Reed, K. A., Schwaller, M. R., Stewart, R., Tanelli, S., Tokay, A., Wang, J. R., & Wolde, M. (2017). The Global Precipitation Measurement (GPM) mission for science and society. Bulletin of the American Meteorological Society, 98, 1675–1699. https://doi.org/10.1175/BAMS-D-15-00306.1.

    Article  Google Scholar 

  • Skofronick-Jackson, G., Kirschbaum, D., Petersen, W. A., Huffman, G. J., Kidd, C., Stocker, E. F., & Kakar, R. (2018). GPM scientific achievements and societal contributions: Reviewing three years of advanced rain and snow measurements. Quarterly Journal of the Royal Meteorological Society, 144(S1), 27–48. https://doi.org/10.1002/qj.3313.

    Article  Google Scholar 

  • Steiner, M., Bell, T. L., Zhang, Y., & Wood, E. F. (2003). Comparison of two methods for estimating the sampling-related uncertainty of satellite rainfall averages based on large radar dataset. Journal of Climate, 16, 3759–3778. https://doi.org/10.1175/1520-0442(2003)016,3759:COTMFE.2.0.CO;2.

    Article  Google Scholar 

  • Suk, M.-K., Chang, K.-H., Cha, J.-W., & Kim, K.-E. (2013). Operational real-time adjustment of radar rainfall estimation over the South Korea region. Journal of the Meteorological Society of Japan, 91, 545–554. https://doi.org/10.2151/jmsj.2013-409.

    Article  Google Scholar 

  • Tan, B.-Z., Petersen, W. A., & Tokay, A. (2016). A novel approach to identify sources of errors in IMERG for GPM ground validation. Journal of Hydrometeorology, 17, 2477–2491. https://doi.org/10.1175/JHM-D-16-0079.1.

    Article  Google Scholar 

  • Tan, B.-Z., Petersen, W. A., Kirstetter, P.-E., & Tian, Y. (2017a). Performance of IMERG as a function of spatiotemporal scale. Journal of Hydrometeorology, 18, 307–319. https://doi.org/10.1175/JHM-D-16-0174.1.

    Article  Google Scholar 

  • Tan, J., Petersen, W. A., Kirchengast, G., Goodrich, D. C., & Wolff, D. B. (2017b). Evaluation of global precipitation measurement rainfall estimates against three dense gauge networks. Journal of Hydrometeorology, 19, 517–532. https://doi.org/10.1175/JHM-D-17-0174.1.

    Article  Google Scholar 

  • Tang, G., Zeng, Z., Long, D., & Guo, X. (2015). Statistical and hydrological comparisons between TRMM and GPM Level-3 products over a midlatitude basin: Is day-1 IMERG a good successor for TMPA 3B42V7? Journal of Hydrometeorology, 17, 121–137. https://doi.org/10.1175/JHM-D-15-0059.1.

    Article  Google Scholar 

  • Tao, W.-K., Wu, D., Matsui, T., Peters-Lidard, C., Lang, S., Hou, A. Y., Reinecker, M., & Petersen, W. A. (2013). The diurnal variation of precipitation during MC3E: A modeling study. Journal of Geophysical Research, 118, 7199–7218. https://doi.org/10.1002/jgrd.50410/asset/jgrd50410.

    Article  Google Scholar 

  • Tao, W.-K., Lang, S., Zeng, X., Li, X., Matsui, T., Mohr, K., Posselt, D., Chern, J., Peters-Lidard, C., Norris, P. M., Kang, I.-S., Choi, I., Hou, A. Y., Lau, K.-M., & Yang, Y.-M. (2014). The Goddard Cumulus Ensemble model (GCE): Improvements and applications for studying precipitation processes. Atmospheric Research, 143, 392–424. https://doi.org/10.1016/j.atmosres.2014.03.005.

    Article  Google Scholar 

  • Tao, W.-K., Wu, D., Lang, S., Chern, J., Peters-Lidard, C., Fridlind, A., & Matsui, T. (2016). High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and observations. Journal of Geophysical Research: Atmospheres, 121, 1278–1305. https://doi.org/10.1002/2015JD023986.

  • Thurai, M., Bringi, V. N., Carey, L. D., Gatlin, P., Schultz, E., & Petersen, W. A. (2012). Estimating the accuracy of polarimetric radar-based retrievals of drop size distribution parameters and rain rate: An application of error variance separation using radar-derived spatial correlations. Journal of Hydrometeorology, 13, 1066–1079. https://doi.org/10.1175/JHM-D-11-070.1.

    Article  Google Scholar 

  • Thurai, M., Gatlin, P. N., Bringi, V. N., Petersen, W. A., Kennedy, P., Notaros, B., & Carey, L. D. (2017). Towards completing the rain drop size spectrum: Case studies involving 2D-video disdrometer, droplet spectrometer, and polarimetric radar measurements. Journal of Applied Meteorology, 56, 877–896. https://doi.org/10.1175/JAMC-D-16-0304.1.

    Article  Google Scholar 

  • Tokay, A., D’Adderio, L., Porcù, F., Wolff, D., & Petersen, W. A. (2017). A field study of footprint-scale variability of raindrop size distribution. Journal of Hydrometeorology, 16, 1855–1868. https://doi.org/10.1175/JHM-D-15-0159.1.

    Article  Google Scholar 

  • Tokay, A., D’Aderio, L. P., Wolff, D., & Petersen, W. (2020). Development and evaluation of the raindrop size distribution parameters for the NASA Global Precipitation Measurement Mission Ground Validation Program. Journal of Atmospheric and Oceanic Technology, 37, 115-138. https://doi.org/10.1175/JTECH-D-18-0071.1.

  • Vega, M., Chandrasekar, V., Carswell, J., Beauchamp, R. M., Schwaller, M. R., & Nguyen, C. M. (2014). Salient features of the dual-frequency, dual-polarized, Doppler radar for remote sensing of precipitation. Radio Science, 49, 1087–1105. https://doi.org/10.1002/2014RS005529.

    Article  Google Scholar 

  • von Lerber, A., Moisseev, D., Marks, D., Petersen, W. A., Harri, A., & Chandrasekar, V. (2018). Validation of satellite-based snowfall products by using a combination of weather radar and surface observations. Journal of Applied Meteorology and Climatology, 57, 797–820. https://doi.org/10.1175/JAMC-D-17-0176.1.

    Article  Google Scholar 

  • Wang, J., Fisher, B. L., & Wolff, D. B. (2008). Estimating rain rates from tipping-bucket rain gauge measurements. Journal of Atmospheric and Oceanic Technology, 25, 43–56. https://doi.org/10.1175/2007JTECHA895.1.

    Article  Google Scholar 

  • Williams, C. R., Bringi, V. N., Carey, L., Gatlin, P., Haddad, Z. S., Munchak, S. J., Petersen, W. A., Meneghini, R., Nesbitt, S. W., Tanelli, S., Tokay, A., Thurai, M., Wilson, A., & Wolff, D. B. (2014). Describing the shape of raindrop size distributions using uncorrelated raindrop mass spectrum parameters. Journal of Applied Meteorology and Climatology, 53, 1282–1296. https://doi.org/10.1175/JAMC-D-13-076.1.

    Article  Google Scholar 

  • Wingo, S.-M., Petersen, W. A., Pabla, C. S., Gatlin, P. N., Marks, D. A., & Wolff, D. B. (2018). The system for integrating multi-platform data to build the atmospheric column (SIMBA) precipitation observation fusion framework. Journal of Atmospheric and Oceanic Technology, 35, 1353–1374. https://doi.org/10.1175/JTECH-D-17-0187.1.

    Article  Google Scholar 

  • Wolff, D. B., Marks, D., & Petersen, W. A. (2015). General application of the Relative Calibration Adjustment (RCA) technique for monitoring and correcting radar reflectivity calibration. Journal of Atmospheric and Oceanic Technology, 32, 496–506. https://doi.org/10.1175/JTECH-D-13-00185.1.

    Article  Google Scholar 

  • You, Y., Wang, N.-Y., Ferraro, R. R., & Rudlosky, S. (2016). Quantifying the snowfall detection performance of the Global Precipitation Measurement (GPM) Microwave Imager channels over land. Journal of Hydrometeorology, 17, 1101–1117. https://doi.org/10.1175/JHM-D-16-0190.1.

    Article  Google Scholar 

  • Zagrodnick, J. P., McMurdie, L. A., & Houze, R. A., Jr. (2018). Stratiform precipitation processes in cyclones passing over a coastal mountain range. Journal of the Atmospheric Sciences, 75, 983–1004. https://doi.org/10.1175/JAS-D-17-0168.1.

    Article  Google Scholar 

  • Zhang, J., Howard, K., Langston, C., Kaney, B., Qi, Y., Tang, L., Grams, H., Wang, Y., Cocks, S., Martinaitis, S., Arthur, A., Cooper, K., Brogden, J., & Kitzmiller, D. (2016). Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bulletin of the American Meteorological Society, 97, 621–638. https://doi.org/10.1175/BAMS-D-14-00174.1.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to all our US and international GPM GV partners for their outstanding collaboration in GPM GV research. We specifically acknowledge the Korean Meteorological Administration for provision of RAD-RAR datasets enabling the IMERG validation and analysis discussed in this chapter. The NASA GPM and PMM Programs, specifically, Dr. Ramesh Kakar (retired), Dr. Gail Skofronick-Jackson, and Dr. Scott Braun, are acknowledged for their support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter A. Petersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petersen, W.A., Kirstetter, PE., Wang, J., Wolff, D.B., Tokay, A. (2020). The GPM Ground Validation Program. In: Levizzani, V., Kidd, C., Kirschbaum, D., Kummerow, C., Nakamura, K., Turk, F. (eds) Satellite Precipitation Measurement. Advances in Global Change Research, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-030-35798-6_2

Download citation

Publish with us

Policies and ethics