Skip to main content
Log in

Ignition of a metallized composite solid propellant by a group of hot particles

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The solid-state ignition of a metallized composite propellant (ammonium perchlorate + 14% butyl rubber +5% aluminum powder + 6% plasticizer) under local heating by several sources of limited power capacity (dimensions of the hot particle x p = 4 mm and y p = 2 mm) was studied by mathematical modeling. For the temperature of the heated steel particles and the distance between them varied in the ranges 700 < T p < 1500 K and 0.1x p < Δx < 1.5xp, respectively, the values of T p and Δx were determined for which the ignition delay corresponds to the initiation of combustion of the composite propellant by a single particle, by a plate at a constant temperature or by several particles. In the region of low initial temperatures of the local sources (T p < 1100 K), the limiting values Δx → 0.1x p and Δx > 1.5x p, were identified for which the characteristics and mechanism of ignition of the propellant by a group of heated particles can be studied using the “plate–propellant–gas” model and the “single particle–propellant–gas” model, respectively. Decreasing the distance Δx at T p < 1100 K decreases the induction period to 50% and reduces the minimum initial temperature of the source required to initiate propellant combustion from 830 to 700 K. At T p > 1100 K, the ignition of the metallized composite solid propellant by a single or several particles can be studied using relatively simple one-dimensional models of condensed material ignition by a plate at constant temperature. The variation in the ignition delay in this case is less than 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Bobylev, Solid Propellant Rocket Motor As a Means of Rocket Motion Control (Mashinostroenie, Moscow, 1992) [in Russian].

    Google Scholar 

  2. V. I. Petrenko and V. L. Popov, “A Variable-Thrust Solid-Propellant Rocket Engine with Local Combustion Boosting,” Fiz. Goreniya Vzryva 32 (3), 102–106 (1996) [Combust., Expl., Shock Waves 32 (3), 327–330 (1996)].

    Google Scholar 

  3. S. A. Rashkovsky, Yu. M. Milehin, A. N. Kluchnikov, and A. V. Fedorychev, “Method of the Model Equation in the Theory of Unsteady Combustion of a Solid Propellant,” Fiz. Goreniya Vzryva 48 (1), 71–79 (2012) [Combust., Expl., Shock Waves 48 (1), 64–72 (2012)].

    Google Scholar 

  4. A. A. Shishkov and B. V. Rumyantsev, Gas Generators for Rocket Systems (Mashinostroenie, Moscow, 1981) [in Russian].

    Google Scholar 

  5. V. V. Vetrov, V. A. Dunaev, V. A. Nikitin, and L. I. Aleshicheva, “Simulation of the Afterburning of Metal Particles in a Predetermined Region of a Guided Artillery Shell with a Gas Generator,” Izv. Ross. Akad. Raket. Artiller. Nauk, No. 65, 40–44 (2010).

    Google Scholar 

  6. S. A. Rashkovskii, Yu. M. Milekhin, and A. V. Fedorychev, “Solid Propellant Gas Generators with a Gas Flow Stabilization System,” Dokl. Akad. Nauk 463 (1), 67–71 (2015).

    Google Scholar 

  7. A. S. Shteinberg, Rapid Reactions in Energetic Systems: High-Temperature Decomposition of Propellants and Explosives (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  8. L. K. Gusachenko, V. E. Zarko, and A. D. Rychkov, “Ignition and Extinction of Homogeneous Energetic Materials by a Light Pulse,” Fiz. Goreniya Vzryva 48 (1), 80–88 (2012) [Combust., Expl., Shock Waves 48 (1), 73–80 (2012)].

    Google Scholar 

  9. A. V. Khaneft and E. V. Duginov, “Influence of Melting on the Critical Ignition Energy of Condensed Explosive by a Short Laser Pulse,” Fiz. Goreniya Vzryva 48 (6), 47–53 (2012) [Combust., Expl., Shock Waves 48 (6), 699–704 (2012)].

    Google Scholar 

  10. A. A. Zenin, C. Zanotti, and P. Juliani, “Characteristics of Composite Propellant Ignition by a CO2-laser,” Khim. Fiz. 33 (8), 12–21 (2014).

    Google Scholar 

  11. B. P. Aduev, G. M. Belokurov, S. C. Grechin, and A. V. Puzynin, “Detonation of PETN Single Crystals Initiated by an Electron Beam,” Fiz. Goreniya Vzryva 6 (6), 111–118 (2010) [Combust., Expl., Shock Waves 6 (6), 712–718 (2010)].

    Google Scholar 

  12. A. V. Khaneft, E. V. Duginov, and G. A. Ivanov, “Modeling PETN Initiation by a Beam of Nanosecond Electrons,” Khim. Fiz. Mezoskop. 14 (1), 28–39 (2012).

    Google Scholar 

  13. V. I. Oleshko, V. E. Zarko, V. B. Lysyk, V. P. Tsipilev, and P. I. Kalmykov, “Initiation of Energetic Mixtures Based on Furazanotetrazine Dioxide by an Electron Beam,” Izv. Vyssh. Uchebn. Zaved., Fiz. 56 (12-2), 63–68 (2013).

    Google Scholar 

  14. I. G. Assovskii and Z. G. Zakirov, “On the Ignition of a Gasifying Propellant by a Heat Pulse,” Khim. Fiz. 6 (11), 1583–1589 (1987).

    Google Scholar 

  15. R. F. McAlevy III, P. L. Cowan, and M. Summerfield, “The Mechanism of Ignition of Composite Solid Propellants by Hot Gases,” in ARS Progress in Astronautics and Rocketry: Solid Propellant Rocket Research (Academic Press, New York, 1960).

    Google Scholar 

  16. V. V. Barzykin and A. G. Merzhanov, “Ignition of Energetic Materials under Conditions of Complex Heat Exchange,” J. Propul. Power 11 (4), 816–823 (1995).

    Article  Google Scholar 

  17. I. G. Assovskii, Z. G. Zakirov, and O. I. Leipunskii, “Ignition and Combustion of Propellant in a Radiating Gas Flow,” Fiz. Goreniya Vzryva 22 (6), 20–26 (1986) [Combust., Expl., Shock Waves 22 (6), 658–664 (1986)].

    Google Scholar 

  18. R. K. Kumar, “Gas Phase Ignition of a Composite Solid Propellant Subjected to Radiant Heating,” Combust. Sci. Technol. 30 (1-6), 273–288 (1983).

    Article  Google Scholar 

  19. M. Q. Brewster, “Surface-Absorption Assumption for Radiant Heating and Ignition of Energetic Solids,” J. Thermophys. Heat Transfer 20 (2), 348–351 (2006).

    Article  Google Scholar 

  20. U. I. Gol’dshleger, V. V. Barzykin, and T. P. Ivleva, “Ignition of Condensed Explosives by a Hot Spherical Particle,” Fiz. Goreniya Vzryva 9 (5), 733–740 (1973) [Combust., Expl., Shock Waves 9 (5), 642–647 (1973)].

    Google Scholar 

  21. U. I. Gol’dshleger, V. V. Barzykin, and A. T. Merzhanov, “Mechanism and Laws of Ignition of Condensed Systems by a Two-Phase Flow,” Fiz. Goreniya Vzryva 7 (3), 319–332 (1971) [Combust., Expl., Shock Waves 7 (3), 277–286 (1971)].

    Google Scholar 

  22. A. S. Shteinberg, V. B. Ulybin, V. V. Barzykin, and A. G. Merzhanov, “Ignition of Condensed Materials under Conditions of Constant Temperature on the Surface,” Inzh.-Fiz. Zh., No. 4, 482–486 (1966).

    Google Scholar 

  23. H. L. Girdhar and A. J. Arora, “Ignition of Composite Solid Propellants by the Hot Plate Technique,” Combust. Flame 31, 245–250 (1978).

    Article  Google Scholar 

  24. A. G. Knyazeva, “Ignition of a Condensed Substance by a Hot Plate with Consideration of Thermal Stresses,” Fiz. Goreniya Vzryva 28 (1), 13–18 (1992) [Combust., Expl., Shock Waves 28 (1), 1015 (1992)].

    Google Scholar 

  25. J. L. Urban, C. D. Zak, and C. Fernandez-Pello, “Cellulose Spot Fire Ignition by Hot Metal Particles,” Proc. Combust. Inst. 35 (3), 2707–2714 (2015).

    Article  Google Scholar 

  26. S. Wang, H. Chen, and N. Liu, “Ignition of Expandable Polystyrene Foam by a Hot Particle: An Experimental and Numerical Study,” J. Hazard. Mater. 283, 536–543 (2015).

    Article  Google Scholar 

  27. R. M. Hadden, S. Scott, C. Lautenberger, and A. C. Fernandez-Pello, “Ignition of Combustible Fuel Beds by Hot Particles: An Experimental and Theoretical Study,” Fire Technol. 47 (2), 341–355 (2011).

    Article  Google Scholar 

  28. R. S. Burkina and E. A. Mikova, “High-Temperature Ignition of a Reactive Material by a Hot Inert Particle with a Finite Heat Reserve,” Fiz. Goreniya Vzryva 45 (2), 40–47 (2009) [Combust., Expl., ShockWaves 45 (2), 40–47 (2009)].

    Google Scholar 

  29. D. O. Glushkov, G. V. Kuznetsov, and P. A. Strizhak, “Stability of Composite Solid Propellant Ignition by a Local Source of Limited Energy Capacity,” Fiz. Goreniya Vzryva 50 (6), 54–60 (2014) [Combust., Expl., Shock Waves 50 (6), 670–675 (2014)].

    Google Scholar 

  30. A. V. Zakharevich, V. T. Kuznetsov, G. V. Kuznetsov, and V. I. Maksimov, “Ignition of Model Composite Propellants by a Single Particle Heated to High Temperatures,” Fiz. Goreniya Vzryva 44 (5), 54–57 (2008) [Combust., Expl., Shock Waves 44 (5), 543–546 (2008)].

    Google Scholar 

  31. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Nauka, Moscow, 1987; Plenum, New York, 1969).

    Google Scholar 

  32. O. F. Shlenskii, Combustion and Explosion of Materials (Mashinostroenie, Moscow, 2014) [in Russian].

    Google Scholar 

  33. D. O. Glushkov, G. V. Kuznetsov, and P. A. Stryzhak, “Numerical Simulation of Solid-State Ignition of a Metallized Condensed Material Heated to High Temperatures by a Particle,” Khim. Fiz. 30 (12), 35–41 (2011).

    Google Scholar 

  34. D. O. Glushkov, G. V. Kuznetsov, and P. A. Stryzhak, “Ignition of a Composite Propellant by a Hot Particles under Nonideal Thermal Contact,” Khim. Fiz. 34 (7), 39–45 (2015).

    Google Scholar 

  35. D. O. Glushkov, “The Effect of Burnup on the Integral Characteristics of the Ignition of a Metallized Composite Solid Propellant under Local Heating,” Khim. Fiz. Mezoskop. 16 (1), 52–59 (2014).

    Google Scholar 

  36. G. V. Kuznetsov and P. A. Stryzhak, Ignition of Condensed Materials under Local Heating (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2010) [in Russian].

    Google Scholar 

  37. D. O. Glushkov, G. V. Kuznetsov, and P. A. Strizhak, “Integral Characteristics of Ignition of a Polymer Material by Several Particles Heated to a High-Temperature,” Pozharnaya Bezopasnost’, No. 4, 27–35 (2013).

    Google Scholar 

  38. Ya. B. Zel’dovich, O. I. Leipunskii, and V. B. Librovich, Theory of Unsteady Propellant Combustion (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  39. A. E. Averson, V. V. Barzykin, and A. G. Merzhanov, “Approximate Method for Solving Problems of the Theory of Thermal Ignition,” Dokl. Akad. Nauk SSSR 178 (1), 131–134 (1968).

    Google Scholar 

  40. V. N. Vilyunov and A. K. Kolchin, “Ignition of Condensed Explosives by Conductive Heat Transfer from Media with Poor Thermal Conductivity,” Fiz. Goreniya Vzryva 2 (3), 101–109 (1966) [Combust., Expl., Shock Waves 2 (3), 61–65 (1966)].

    Google Scholar 

  41. V. N. Vilyunov, Theory of Ignition of Condensed Materials (Nauka, Novosibirsk, 1984) [in Russian].

    Google Scholar 

  42. A. M. Grishin and A. N. Subbotin, “Conjugate Heat Transfer between the Heated Inert Bodies and a Reactive Medium,” in Heat and Mass Transfer (Inst. of Heat and Mass Transfer, Nat. Acad. of Sciences of Belarus, Minsk, 1972), Vol. 1, Part 1, pp. 286–294 [in Russian].

    Google Scholar 

  43. V. N. Vilyunov and V. E. Zarko, Ignition of Solids, (Elsevier, Amsterdam, 1989).

    Google Scholar 

  44. I. G. Assovskii, Physics of Combustion and Internal Ballistics (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  45. I. G. Assovsky, A. G. Istratov, and O. I. Leipunskii, “On the Self-Ignition of Condensed Propellants,” Dokl. Akad. Nauk SSSR 239 (3), 625–628 (1978).

    Google Scholar 

  46. V. M. Paskonov, V. I. Polezhaev, and L. A. Chudov, Numerical Modeling of Heat and Mass Transfer (Nauka, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  47. A. A. Samarskii, Theory of Difference Schemes (Nauka, Moscow, 1989) [in Russian].

    MATH  Google Scholar 

  48. B. V. Novozhilov, Unsteady Combustion of Solid Rocket Propellants (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  49. M. S. Shtekher, Propellants and Working Bodies of Rocket Engines (Mashinostroenie, Moscow, 1976) [in Russian].

    Google Scholar 

  50. Y. M. Timnat, Advanced Chemical Rocket Propulsion, (Academic Press, 1987).

    Google Scholar 

  51. V. I. Tsutsuran, N. V. Petrukhin, and S. A. Gusev, Military-Technical Analysis of the State and Prospects of Development of Rocket Propellants (Ministry of Defense of the Russian Federation, Moscow, 1999) [in Russian].

    Google Scholar 

  52. V. S. Chirkin, Thermal Properties of Materials: Handbook (Gos. Izd. Fiz.-Mat. Lit., Moscow, 1959) [in Russian].

    Google Scholar 

  53. N. B. Vargaftik, Handbook of Thermophysical Properties of Gases and Liquids (Stars, Moscow, 2006) [in Russian].

    Google Scholar 

  54. Thermal Engineering Handbook, Vol. 1, Ed. by V. N. Yurenev and P. D. Lebedev (Energiya, Moscow, 1975) [in Russian].

  55. Thermal Engineering Handbook, Vol. 2, Ed. by V. N. Yurenev and P. D. Lebedev (Energiya, Moscow, 1976) [in Russian].

  56. A. E. Averson, V. V. Barzykin, and A. T. Merzhanov, “Ignition of Condensed Explosive Systems with Ideal Heat Transfer from Surface Taking into Account Burnup,” Inzh. Fiz. Zh. 9 (2), 245–249 (1965).

    Google Scholar 

  57. I. G. Assovskii and A. G. Merzhanov, “Validity of Experimental and Theoretical Modeling of Combustion of High-Energy Materials,” Fiz. Goreniya Vzryva 49 (3), 11–21 (2013) [Combust., Expl., Shock Waves 49 (3), 264–272 (2013)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Glushkov.

Additional information

Published in Fizika Goreniya i Vzryva, Vol. 52, No. 6, pp. 83–93, November–December, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glushkov, D.O., Kuznetsov, G.V. & Strizhak, P.A. Ignition of a metallized composite solid propellant by a group of hot particles. Combust Explos Shock Waves 52, 694–702 (2016). https://doi.org/10.1134/S0010508216060095

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508216060095

Keywords

Navigation