Skip to main content
Log in

Calculation of the characteristics of the ignition of a metallized composite propellant using various methods for describing its thermophysical properties

  • Combustion, Explosion, and Shock Waves
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The ignition of a metallized composite propellant by a local energy source of limited heat content is studied. The main characteristic of the process (ignition delay time) is calculated over a wide range of initial temperatures of the source (800–1500 K) for the actual inhomogeneous structure of the propellant with consideration of the presence of fine metal particles and for an effective heterogeneous structure with thermophysical properties calculated by formulas based on the rule of additivity of the thermophysical properties of the components. The thermal conductivity of the propellant is also calculated by approximate expressions proposed by Maxwell, Frick, Bruggeman, Meredith, Xiao, Hamilton, Cross, Behrens, Misnar, Peterson, Hermans, and Nielsen for polymeric materials containing finely dispersed inclusions with a higher thermal conductivity as compared to the polymer matrix. It is found that the expressions proposed by these authors yield values of the ignition delay time and the minimum initial temperature of the heat source required to initiate combustion that differ from those predicted by the model with account of the real heterogeneous structure by up to 75 and 15%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Wang, K. Hossain, and T. L. Jackson, Combust. Theory Model. 12, 45 (2008).

    Article  Google Scholar 

  2. J. S. Sabnis, J. Propuls. Power 19, 48 (2003).

    Article  CAS  Google Scholar 

  3. V. A. Poryazov and A. Yu. Krainov, Izv. Vyssh. Uchebn. Zaved., Fiz. 56 (9/3), 196 (2013).

    Google Scholar 

  4. V. A. Babuk, Combust. Explos. Shock Waves 45, 486 (2009).

    Article  Google Scholar 

  5. F. Nihal Tüzün, J. ASTM Int. 2, 117 (2005).

    Google Scholar 

  6. M. Q. Brewster, M. H. Hites, and S. F. Son, Combust. Flame 94, 178 (1993).

    Article  CAS  Google Scholar 

  7. S. A. Rashkovskii, Yu. M. Milekhin, A. N. Klyuchnikov, and A. V. Fedorychev, Combust. Explos. Shock Waves 48, 64 (2012).

    Article  Google Scholar 

  8. C. D. Bencher, R. H. Dauskardt, and R. O. Ritchie, J. Spacecraft Rockets 32, 328 (1995).

    Article  CAS  Google Scholar 

  9. V. A. Shandakov, V. N. Puzanov, V. F. Komarov, and V. P. Borochkin, Combust. Explos. Shock Waves 35, 418 (1999).

    Article  Google Scholar 

  10. J. J. Freesmeier and P. B. Butler, J. Propuls. Power 15, 552 (1999).

    Article  CAS  Google Scholar 

  11. S. I. Fut’ko, V. P. Bondarenko, and L. N. Dolgii, J. Eng. Thermophys. 85, 558 (2012).

    Article  Google Scholar 

  12. A. Ulas, G. A. Risha, and K. K. Kuo, Fuel 85, 1979 (2006).

    Article  CAS  Google Scholar 

  13. V. I. Tsutsuran, N. V. Petrukhin, and S. A. Gusev, Military Technical Analysis of State-of-Art and Perspectives of Rocket Fuel Development (Min. Oborony RF, Moscow, 1999) [in Russian].

    Google Scholar 

  14. D. O. Glushkov, G. V. Kuznetsov, and P. A. Strizhak, Russ. J. Phys. Chem. B 8, 196 (2014).

    Article  CAS  Google Scholar 

  15. D. O. Glushkov, G. V. Kuznetsov, and P. A. Strizhak, Russ. J. Phys. Chem. B 7, 269 (2013).

    Article  CAS  Google Scholar 

  16. A. F. Chudnovskii, Thermophysical Properties of Disperse Materials (Fizmatgiz, Moscow, 1962) [in Russian].

    Google Scholar 

  17. A. G. Shashkov, G. M. Volkhov, T. N. Abramenkov, and V. P. Kozlov, Methods for Determination of Heat and Temperature Conductivity (Energiya, Moscow, 1973) [in Russian].

    Google Scholar 

  18. O. T. Farouki, Thermal Properties of Solids (New Hampshire, Hanover, USA, 1981).

    Google Scholar 

  19. J. A. King, K. W. Tucker, J. D. Meyers, et al., Polym. Compos. 22, 142 (2001).

    Article  CAS  Google Scholar 

  20. R. C. Progelhof, J. L. Throne, and R. R. Ruetsch, Polym. Eng. Sci. 16, 615 (1976).

    Article  CAS  Google Scholar 

  21. D. M. Bigg, Adv. Polym. Sci. 119, 1 (1995).

    Article  CAS  Google Scholar 

  22. A. Misnar, Thermal Conductivity of Solids, Liquids, Gases and their Compositions (Wiley, Chichester, 1968).

    Google Scholar 

  23. J. C. Maxwell, A Treatise on Electricity and Magnetism, 3rd ed. (Clarendon, Oxford, UK, 1904), Vol.1.

  24. E. Behrens, J. Compos. Mater. 2 (1), 2 (1968).

    Google Scholar 

  25. J. A. Manson and L. H. Sperling, Polymer Blends and Composites (Plenum, Oxford, 1976).

    Book  Google Scholar 

  26. L. Gao, Phys. Lett. A 309, 435 (2003).

    Article  CAS  Google Scholar 

  27. D. Sundstrom and S. Y. Chen, J. Compos. Mater. 4, 113 (1970).

    Article  Google Scholar 

  28. D. A. G. Bruggeman, Ann. Phys. 24, 636 (1935).

    Article  CAS  Google Scholar 

  29. J. W. Rayleigh, Philos. Mag. 34, 481 (1892).

    Article  Google Scholar 

  30. G. W. Milton, The Theory of Composites (Cambridge Univ. Press, New York, 2004).

    Google Scholar 

  31. R. E. Meredith and C. W. Tobias, J. Electrochem. Soc. 103, 286 (1961).

    Article  Google Scholar 

  32. G. T. Tsao, Ind. Eng. Chem. Fundam. 53, 395 (1961).

    Article  Google Scholar 

  33. S. C. Cheng and R. I. Vachon, Int. J. Heat Mass Transfer 12, 249 (1969).

    Article  CAS  Google Scholar 

  34. J. M. Peterson and J. J. Hermans, J. Compos. Mater. 3, 338 (1969).

    Article  Google Scholar 

  35. Handbook of Fillers and Reinforcements for Plastics, Ed. by H. S. Katz and D. V. Milewski (Van Nostrand Reinhold, New York, 1978; Khimiya, Moscow, 1981).

  36. L. E. Nielsen, Ind. Eng. Chem. Fundam. 13, 17 (1974).

    Article  CAS  Google Scholar 

  37. H. Fricke, Phys. Rev. 24, 575 (1924).

    Article  CAS  Google Scholar 

  38. R. L. Hamilton and O. K. Crosser, Ind. Eng. Chem. Fundam. 1, 187 (1962).

    Article  CAS  Google Scholar 

  39. K. W. Chang and F. A. Howes, Nonlinear Singular Perturbation Phenomena. Theory and Applicatons (Springer, Berlin, Heidelberg, New York, 1984; Mir, Moscow, 1988).

    Book  Google Scholar 

  40. D. O. Glushkov and P. A. Strizhak, J. Eng. Thermophys. 21, 69 (2012).

    Article  CAS  Google Scholar 

  41. D. O. Glushkov, A. V. Zakharevich, and P. A. Strizhak, Khim. Fiz. Mezosk. 14, 483 (2012).

    CAS  Google Scholar 

  42. A. V. Zakharevich, V. T. Kuznetsov, G. V. Kuznetsov, and V. I. Maksimov, Combust. Explos. Shock Waves 44, 543 (2008).

    Article  Google Scholar 

  43. N. B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases (Stars, Moscow, 2006) [in Russian].

    Google Scholar 

  44. V. S. Chirkin, Thermophysical Properties of Materials, The Reference Book (Fizmatlit, Moscow, 1959) [in Russian].

    Google Scholar 

  45. Thermotechnical Handbook, Ed. by V. N. Yurenev and P. D. Lebedev (Energiya, Moscow, 1975), Vol. 1 [in Russian].

  46. Thermotechnical Handbook, Ed. by V. N. Yurenev and P. D. Lebedev (Energiya, Moscow, 1976), Vol. 2 [in Russian].

  47. Y. M. Timnat, Advanced Chemical Rocket Propulsion (Academic, Orlando, 1987).

    Google Scholar 

  48. M. S. Shtekher, Fuels and Working Bodies of Rocket Engines (Mashinostroenie, Moscow, 1976) [in Russian].

    Google Scholar 

  49. U. I. Gol’dshleger, V. V. Barzykin, and A. G. Merzhanov, Fiz. Goreniya Vzryva 7, 319 (1971).

    Google Scholar 

  50. G. V. Kuznetsov and G. V. Taratushkina, Khim. Fiz. 23 (5), 62 (2004).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Glushkov.

Additional information

Original Russian Text © D.O. Glushkov, G.V. Kuznetsov, P.A. Strizhak, 2017, published in Khimicheskaya Fizika, 2017, Vol. 36, No. 1, pp. 36–42.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glushkov, D.O., Kuznetsov, G.V. & Strizhak, P.A. Calculation of the characteristics of the ignition of a metallized composite propellant using various methods for describing its thermophysical properties. Russ. J. Phys. Chem. B 11, 133–139 (2017). https://doi.org/10.1134/S1990793117010031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793117010031

Keywords

Navigation