Skip to main content
Log in

The Hemoglobin Conformation in Erythrocytes at Different Levels of Oxygen Partial Pressure

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The variation in the conformations of hemoglobin heme and globin in response to different oxygen partial pressures (pO2) has been studied by Raman spectroscopy inside erythrocytes and in hemoglobin dissolved in incubation medium. The spectra of hemoglobin inside erythrocytes and in the medium show that several characteristic bands in the range from 1000 to 1700 cm–1 (stretching vibrations in the heme group) and in the high-frequency range from 2800 to 3000 cm–1 (stretching vibrations in globin amino acids) vary with pO2 levels. The curve of hemoglobin saturation with oxygen (sO2) obtained from the Raman-scattering data displays sigmoidal behavior only in hemoglobin inside erythrocytes. It has been shown that differences in heme conformation at different pO2 levels affect the ability of hemoglobin to form complexes with nitric oxide. As the pO2 level increases, the conformational changes of hemoglobin heme in the cell entail an increase in the contribution of vibrations of lateral –CH3 groups in pyrrole half-rings and group vibrations of bonds inside pyrrole half-rings, whereas the globin conformation is associated with a higher contribution of vibrations from H-methine groups and symmetrical terminal methylene groups in amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. P. Hilpert, R. G. Fleischmann, D. Kempe, et al., Am. J. Physiol. 205 (2), 337 (1963).

    Article  Google Scholar 

  2. M. Berenbrink, Respir. Physiol. Neurobiol. 154 (1–2), 165 (2006).

  3. B. F. Verigo, Arch. Gesamte Physiol Menschen Tiere 51, 321 (1892).

    Article  Google Scholar 

  4. Ch. Bohr, K. Hasselbalch, and A. Krog, Skand. Arch. Physiol. 16, 401 (1904).

    Google Scholar 

  5. M. F. Perutz, Annu. Rev. Biochem. 48, 327 (1979).

    Article  Google Scholar 

  6. F. B. Jensen, Acta Physiol. Scand. 182 (3), 215 (2004).

    Article  Google Scholar 

  7. M. I. Nikinmaa, Physiol. Rev. 72 (2), 301 (1992).

    Article  Google Scholar 

  8. B. Berenbrink, M. Berenbrink, and Ch. Bridges, J. Exp. Biol. 192 (1), 253 (1994).

    Article  Google Scholar 

  9. M. Berenbrink, P. Koldkjar, O. Kepp, et al., Science 307 (5716), 1752 (2005).

    Article  ADS  Google Scholar 

  10. R. Motais, F. Garcia-Romeu, and F. Borgese, J. Gen. Physiol. 90 (2), 197 (1987).

    Article  Google Scholar 

  11. P. Giardina, V. Aurilia, R. Cannio, et al., Eur. J. Biochem. 235 (3), 508 (1996).

    Article  Google Scholar 

  12. N. Barvitenko, N. Adragna, and R. Weber, Cell. Physiol. Biochem. 15 (1–4), 1 (2005).

  13. O. V. Slatinskaya, O. G. Luneva, and L. I. Deev, Biophysics 65 (2), 213 (2020).

    Article  Google Scholar 

  14. 14. J. T. Edsall, J. Hist. Biol. 5 (2), 205 (1972).

    Article  Google Scholar 

  15. B. Wranne, R. D. Woodson, and J. C. Detter, J. Appl. Physiol. 32 (6), 749 (1972).

    Article  Google Scholar 

  16. J. B. West, Am. J. Physiol. – Lung Cell. Mol. Physiol. 316 (4), 585, (2019).

    Article  Google Scholar 

  17. C. Bohr and K. Hasselbalch, Skand. Arch. Physiol. 16, 402 (1904).

    Article  Google Scholar 

  18. S. V. Sidorenko, R. H. Ziganshin, O. G. Luneva, et al., J. Proteomics 184, 25 (2018).

    Article  Google Scholar 

  19. N. A. Brazhe, S. Abdali, A. R. Brazhe, et al., Biophys. J. 97 (12), 3206 (2009).

    Article  ADS  Google Scholar 

  20. S. C. Goheen, L. J. Lis, O. Kucuk, et al., J. Raman Spectrosc. 24 (9), 275 (1993).

    Article  ADS  Google Scholar 

  21. I. P. Torres Filho, J. Terner, R. N. Pittman, et al., J, Appl. Physiol. 104 (6), 1809 (2008).

    Article  Google Scholar 

  22. B. R. Wood, L. Hammer, and D. McNaughton, Vibr. Spectrosc. 38 (1–2), 78 (2005).

  23. O. G. Luneva, S. V. Sidorenko, O. O. Ponomarchuk, et al., Cell. Physiol. Biochem. 39 (1), 81 (2016).

    Article  Google Scholar 

  24. B. R. Wood, P. Caspers, G. J. Puppels, et al., Anal. Bioanal. Chem. 387 (5), 1691 (2007).

    Article  Google Scholar 

  25. I. P. Torres Filho, J. Terner, R. N. Pittman, et al., Am. J. Physiol. – Heart Circ. Physiol. 289, 488 (2005).

    Article  Google Scholar 

  26. G. Chottard and D. Mansuy, Biochem. Biophys. Res. Commun. 77 (4), 1333 (1977).

    Article  Google Scholar 

  27. A. Szabo and L. D. Barron, J. Am. Chem. Soc. 97 (3), 660 (1975).

    Article  Google Scholar 

  28. G. Louie, T. Tran, J. I. Englander, and S. W. Englander, Mol. BioI. 201, 755 (1988).

    Article  Google Scholar 

  29. Y. Sun, A. Benabbas, W. Zeng, et al. Proc. Natl Acad. Sci. U. S. A. 111 (18), 6570 (2014).

    Article  ADS  Google Scholar 

  30. R. V. Chertkova, N. A. Brazhe, T. V. Bryantseva, et al., PLoS One 12 (5), e0178280 (2017).

    Article  Google Scholar 

  31. R. Liddington, Z. Derewenda, G. Dodson, and D. Harris Nature 331, 725 (1988).

    Article  ADS  Google Scholar 

  32. A. Klug, F. Kreuzer, and F. J. W. Roughton, Physiol. Acta 14, 121 (1956).

    Google Scholar 

  33. R. Zander and H. Schmid-Schoenbien, Respir. Physiol. 19, 279 (1973).

    Article  Google Scholar 

  34. K. D. Vandegriff and J. S. Olson, J. Biol. Chem. 259, 12609 (1984).

    Article  Google Scholar 

  35. S. T. Bouwer, L. Hoofd, and F. Kreuzer, Biochim. Biophys. Acta 1338, 127 (1997).

    Article  Google Scholar 

Download references

Funding

O.V.S. acknowledges The reported study was funded by RFBR, project no. 20-34-90073. G.V.M. acknowledges the support of the Russian Science Foundation, project 19-7930062. This work was also supported by the Interdisciplinary research and educational school of the Moscow State University, Molecular technologies of living systems and synthetic biology project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Maksimov.

Ethics declarations

Conflict of interest. The authors declare no conflicts of interests.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the WMA International Code of Medical Ethics and were approved by the Ethical Committee of the Department of Biology, Lomonosov Moscow State University.

Additional information

Translated by V. Gulevich

Abbreviations: Hb, hemoglobin; AE1, band 3, anion exchanger 1; dHb, deoxyhemoglobin; oHb, oxyhemoglobin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slatinskaya, O.V., Luneva, O.G., Deev, L.I. et al. The Hemoglobin Conformation in Erythrocytes at Different Levels of Oxygen Partial Pressure. BIOPHYSICS 66, 797–803 (2021). https://doi.org/10.1134/S0006350921050225

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921050225

Navigation