Skip to main content
Log in

Modulation of growth media influences aggregation and biofilm formation between Azotobacter chroococcum and Trichoderma viride

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The effect of growth media manipulation on the in vitro biofilm forming ability of Azotobacter chroococcum MTCC 25045 and Trichoderma viride ITCC 2211, both as individual cultures and co-culture was evaluated for 16 days. Growth curves (Bioscreen C lab system) and type of microbial population (planktonic and biofilm) helped to validate the aggregation and biofilm data. Modulation of combinations of routine growth media—Jensen’s broth (J) and potato dextrose broth (P) by changing their ratios (100, 75: 25, 50: 50, and 25: 75) was undertaken. In individual bacterial or fungal inoculation, the growth media–J25: P75 and P100 caused significantly (p < 0.01) higher growth, aggregation, and biofilm formation. In co-culture, J25: P75 medium showed enhanced planktonic as well as biofilm population, aggregation, and biofilm formation followed by J50: P50 and J75: P25 media. This is a first report on interrelationships among growth, aggregation and biofilm formation in relation to medium optimization for fungal-bacterial biofilm development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vlamakis, H., Chai, Y., Beauregard, P., Losick, R., and Kolter, R., Nat. Rev. Microbiol., 2013, vol. 11, no. 3, pp. 157–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Costerton, J.W., Geesey, G.G., and Chen, K.J., Sci. Amer., 1978, vol. 238, no. 1, pp. 86–95.

    Article  CAS  PubMed  Google Scholar 

  3. Davey, M.E. and O’Toole, G.A., Microbiol. Mol. Biol. Rev., 2000, vol. 64, no. 4, pp. 847–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hausner, M. and Wuertz, S., Appl. Environ. Microbiol., 1999, vol. 65, no. 8, pp. 3710–3713.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Karatan, E. and Watnick, P., Microbiol. Mol. Biol. Rev., 2009, vol. 73, no. 2, pp. 310–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kolenbrander, P.E., Methods Enzymol., 1995, vol. 253, pp. 385–397.

    Article  CAS  PubMed  Google Scholar 

  7. Buswell, C.M., Herlihy, Y.M., Marsh, P.D., Keevil, C.W., and Leach, S.A., J. Appl. Microbiol., 1997, vol. 83, no. 4, pp. 477–484.

    Article  Google Scholar 

  8. Rickard, A.H., Leach, S.A., Hall, L.S., Buswell, C.M., High, N.J., and Handley, P.S., Appl. Environ. Microbiol., 2002, vol. 68, no. 7, pp. 3644–3650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rickard, A.H., Gilbert, P., High, N.J., Kolenbrander, P.E., and Handley, P.S., Trends Microbiol., 2003, vol. 11, no. 2, pp. 94–100.

    Article  CAS  PubMed  Google Scholar 

  10. Kolenbrander, P.E., Palmer, R.J. Jr., Periasamy, S., and Jakubovics, N.S., Nat. Rev. Microbiol., 2010, vol. 8, pp. 471–480.

    Article  CAS  PubMed  Google Scholar 

  11. Wimpenny, J. and Colasanti, R., Biofilms, 2004, vol. 1, no. 4, pp. 369–375.

    Article  Google Scholar 

  12. Cisar, J.O., Kolenbrander, P.E., and McIntire, F.C., Infect. Immun., 1979, vol. 24, no.3, pp. 742–752.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Burmølle, M., Ren, D., Bjarnsholt, T., and Sørensen, S.J., Trends Microbiol., 2014, vol. 22, no. 2, pp. 84–91.

    Article  PubMed  Google Scholar 

  14. Jefferson, K.K., FEMS Microbiol. Lett., 2004, vol. 236, no. 2, pp. 163–173.

    Article  CAS  PubMed  Google Scholar 

  15. Andersson, S., Dalhammar, G., and Rajarao, G.K., Microbiol. Res., 2011, vol. 166, no. 6, pp. 449–457.

    Article  CAS  PubMed  Google Scholar 

  16. Ren, D., Madsen, J.S., Sørensen, S.J., and Burmølle, M., ISME J., 2015, vol. 9, pp. 81–89.

    Article  CAS  PubMed  Google Scholar 

  17. Alsteens, D., Beaussart, A., El-Kirat-Chatel, S., Sullan, R.M.A., and Dufrêne, Y.F., PLoS Pathog., 2013, vol. 9, no. 9, p. e1003516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Benoit, I., van den Eske., M.H., Patyshakuliyeva, A., Mattern, D.J., Blei, F., Zhou, M., et al., Environ. Microbiol., 2015, vol. 17, no. 6, pp. 2099–2113.

    Article  CAS  PubMed  Google Scholar 

  19. Seneviratne, G., Curr. Sci., 2003, vol. 85, no. 10, pp. 1395–1396.

    Google Scholar 

  20. Beijerinck, M.W., Arch. néerl. Science (Series 2), 1901, vol. 8, pp. 190–217.

    Google Scholar 

  21. Prasanna, R., Pattnayak, S., Sugitha, T.C.K., Nain, L., and Saxena, A.K., Folia Microbiol., 2011, vol. 56, no. 1, pp. 49–58.

    Article  CAS  Google Scholar 

  22. Prasanna, R., Babu, S., Bidyarani, N., Kumar, A., Monga, D., Mukherjee, A.K., et al., Exp. Agric., 2015, vol. 51, no. 1, pp. 42–65.

    Article  Google Scholar 

  23. Prasanna, R., Hossain, F., Babu, S., Bidyarani, N., Adak, A., Verma, S., et al., South Afr. J. Plant Soil, 2015, vol. 32, no. 4, pp. 199–207.

    Article  Google Scholar 

  24. Triveni, S., Prasanna, R., and Saxena, A.K., Folia Microbiol., 2012, vol. 57, no. 5, pp. 431–437.

    Article  CAS  Google Scholar 

  25. Triveni, S., Prasanna, R., Shukla, L., and Saxena, A.K., Ann. Microbiol., 2013, vol. 63, no. 3, pp. 1147–1156.

    Article  CAS  Google Scholar 

  26. Triveni, S., Prasanna, R., Kumar, A., Bidyarani, N., Singh, R., and Saxena, A.K., Biocont. Sci. Technol., 2015, vol. 25, no. 6, pp. 656–670.

    Article  Google Scholar 

  27. Nagaoka, S., Hojo, K., Murata, S., Mori, T., Ohshima, T., and Maeda, N., FEMS Microbiol. Lett., 2008, vol. 281, no. 2, pp. 183–189.

    Article  CAS  PubMed  Google Scholar 

  28. Malik, A., Sakamoto, M., Ono, T., and Kakii, K., J. Biosci. Bioengin., 2003, vol. 96, no. 1, pp. 10–15.

    Article  CAS  Google Scholar 

  29. O’Toole, G.A., J. Visualized Expt., 2011, vol. 47, pp. 1–2.

    Google Scholar 

  30. Basu, S., Bose, C., Ojha, N., Das, N., Das, J., Pal, M., and Khurana, S., Bioinformation, 2015, vol. 11, no. 4, pp. 182–184.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wulff, N.A., Mariano, A.G., Gaurivaud, P., de Almeida Souza, L.C., Virgılio, A.C.D., and Monteiro, P.B., Curr. Microbiol., 2008, vol. 57, no.2, pp. 127–132.

    Article  CAS  PubMed  Google Scholar 

  32. Nitrogen Fixation by Free–living Microorganisms, Stewart, W.D.P., Ed., London: Cambridge University Press, 1975, pp. 1–27.

  33. Poortinga, A.T., Bos, R., Nordea, W., and Busscher, H.J., Surf. Sci. Rep., 2002, vol. 47, no. 1, pp. 1–32.

    Article  CAS  Google Scholar 

  34. Microbial Cell Surface Analysis, Mozes, N., Handley, P.S., Busscher, H.J., and Rouxhet, P.G., Eds., New York: VCH Publishers, 1991}, pp. 21–59

  35. Harding, M.W., Marques, L.L., Howard, R.J., and Olson, M.E., Trends Microbiol., 2009, vol. 17, no. 11, pp. 475–480.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Prasanna.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velmourougane, K., Prasanna, R., Saxena, A.K. et al. Modulation of growth media influences aggregation and biofilm formation between Azotobacter chroococcum and Trichoderma viride . Appl Biochem Microbiol 53, 546–556 (2017). https://doi.org/10.1134/S0003683817050179

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683817050179

Keywords

Navigation