Skip to main content
Log in

Seasonal variability of surface and internal M2 tides in the Arctic Ocean

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The modeling results of surface and internal M2 tides for summer and winter periods in the Arctic Ocean (AO) are presented. We employed a modified version of the three-dimensional finite-element hydrothermodynamic model QUODDY-4 differing from the original model by using a rotated (instead of spherical) coordinate system and by considering the equilibrium-tide effects. It has been shown that the modeling results for the surface tide differs little from the results obtained earlier by other authors. According to these results, the amplitudes of internal tidal waves (ITWs) in the AO are significantly lower than in other oceans and the ITWs proper have the character of trapped waves. Their source of generation is located at the continental slope northwest of the New Siberian Islands. Our results are consistent with the fields of average (over a tidal cycle) and integral (by depth) densities of baroclinic tidal energy, the maximum baroclinic tidal velocity, and the coefficient of diapycnic mixing. The local rate of baroclinic tidal energy dissipation at the AO ridges increases as it approaches the bottom, as was observed on Mid-Atlantic and Hawaii ridges (but merely within the bottom boundary layer) and is two to three orders of magnitude lower than in other oceans. The ITW degeneration scale in the AO is several hundreds of kilometers in summer and winter, remaining within the range of its values between 100 and 1000 km in mid- and low-latitude oceans. In both seasons, the integral (over the AO area) rate of baroclinic tidal energy dissipation is two orders of magnitude lower than the global estimate (2.5 × 1012 W).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. D. Levine, C. A. Paulson, and J. H. Morrison, “Observations of Internal Gravity Waves under the Arctic Pack Ice,” J. Geophys. Res. 92(C1), 779–782 (1987).

    Article  Google Scholar 

  2. B. A. Kagan, A. A. Timofeev, and E. V. Sofina, “Dynamics and Energetics of the M2 Surface and Internal Tides in the Arctic Ocean: Some Model Results,” in Tidal Energy: New Research and Development, Ed. by K.E. Jonhnson and T.R. Veliotti (Nova Publishers, New York, 2009), 77–94 (in press).

    Google Scholar 

  3. D. R. Lynch and W. R. Gray, “A Wave Equation Model for Finite Element Tidal Computations,” Comput. Fluids 7(3), 207–228 (1979).

    Article  Google Scholar 

  4. D. R. Lynch and F. E. Werner, “Three-Dimensional Hydrodynamics on Finite Elements. Part I: Linearized Harmonic Model,” Intern. J. Numer. Meth. Fluids 7(9), 871–909 (1987).

    Article  Google Scholar 

  5. D. R. Lynch and F. E. Werner, “Three-Dimensional Hydrodynamics on Finite Elements. Part II: Non-Linear Time-Stepping Model,” Intern. J. Numer. Meth. Fluids 12(6), 507–533 (1991).

    Article  Google Scholar 

  6. D. R. Lynch, F. E. Werner, D. A. Greenberg, et al., “Diagnostic Model for Baroclinic, Wind-Driven and Tidal Circulation in Shallow Seas,” Cont. Shelf Res. 12(1), 37–64 (1992).

    Article  Google Scholar 

  7. C. E. Naimie, J. W. Loder, and D. R. Lynch, “Seasonal Variations in the 3D Residual Circulation on Georges Bank,” J. Geophys. Res. 99(C8), 15967–15989 (1994).

    Article  Google Scholar 

  8. J. T. C. Ip and D. R. Lynch, User’s Manual Comprehensive Coastal Circulation Simulation Using Finite Elements: Nonlinear Prognostic Time-Stepping Model,. Thayler School of Engineering, Dartmouth College. Report Number NML 95-1 (New Hampshire, Hanover, 1995).

    Google Scholar 

  9. J. Smagorinsky, “General Circulation Experiments with the Primitive Equations. I. The Basic Experiment,” Mon. Wea. Rev. 91(3), 99–164 (1963).

    Article  Google Scholar 

  10. V. G. Savchenko and L. I. Zubkov, “Numerical Model for Free Internal Gravitational Waves in the Arctic Basin,” Trudy AANII, No. 332, 26–50 (1976).

  11. Z. Kowalik, “A Study of the M2 Tide in the Ice-Covered Arctic Ocean,” Model. Identificat. Control 2(4), 201–223 (1981).

    Article  Google Scholar 

  12. Z. Kowalik and A. Yu. Proshutinsky, The Arctic Ocean Tides. The Polar Oceans and Their Role in Shaping, Ed. by O. M. Johannessen et al., Geophys. Monogr. Ser. (AGU, Washington, DC, 1991), Vol. 85, pp. 137–158.

    Google Scholar 

  13. B. A. Kagan and A. A. Timofeev, “Dynamics and Energetics of Surface and Internal Semidiurnal Tides in the White Sea,” Izv. Akad. Nauk, Fiz. Atm. Okeana 41(4), 550–566 (2005) [Izv., Atm. Ocean. Phys. 41 (4) 498–513 (2005)].

    Google Scholar 

  14. L. Padman and S. Erofeeva, “A Barotropic Inverse Tidal Model for the Arctic Ocean,” Geophys. Res. Lett. 31(2), doi: 1029/2003 GL019003 (2004).

    Google Scholar 

  15. Joint US-Russian Atlas of the Arctic Ocean, Oceanography Atlas for the Summer Period, Ed. by E. Tanis and L. Timokhov, Environmental Working Group (University of Colorado, Media Digital, Colorado, 1977a).

    Google Scholar 

  16. Joint US-Russian Atlas of the Arctic Ocean, Oceanography Atlas for the Winter Period, Ed. by E. Tanis and L. Timokhov, Environmental Working Group (University of Colorado, Media Digital, Colorado, 1977b).

  17. E. Schwiderski, “On Charting Global Ocean Tides,” Rev. Geophys. Space Phys. 18(1), 243–268 (1990).

    Article  Google Scholar 

  18. B. Gjevik and T. Straume, “Model Simulations of the M2 and K1 Tides in the Nordic Seas and the Arctic Ocean,” Tellus 41A(1), 73–96 (1989).

    Article  Google Scholar 

  19. A. Yu. Proshutinskii, “Semidiurnal Tides in the Arctic Ocean according to Simulation Results,” Trudy AANII, No. 429, 29–44 (1993).

  20. A. Yu. Proshutinskii, Level Fluctuations in the Arctic Ocean (Gidrometeoizdat, St. Petersburg, 1993) [in Russian].

    Google Scholar 

  21. N. V. Polyakov and N. E. Dmitriev, “M2 Tide in the Arctic Ocean. I. Barotropic Tide Structure,” Meteorol. Gidrol., No. 1, 56–68 (1994).

  22. F. H. Lyard, “The Tides in the Arctic Ocean from a Finite-Element Model,” J. Geophys. Res. 102(C1), 15611–15638 (1997).

    Article  Google Scholar 

  23. A. A. Androsov, Yu. M. Liberman, A. V. Nekrasov, et al., “Numerical Study of the M2 Tide on the Siberian Continental Shelf,” Shelf. Cont. Shelf Res. 18(7), 715–730 (1998).

    Article  Google Scholar 

  24. B. A. Kagan, D. A. Romanenkov, and E. V. Sofina, “Tidal Ice Drift and Ice-Generated Changes in the Tidal Dynamics/Energetics on the Siberian Continental Shelf,” Shelf. Cont. Shelf. Res. 28(3), 351–368 (2008).

    Article  Google Scholar 

  25. P. G. Baines, “The Generation of Internal Tides by Flat-Bump Topography,” Deep-Sea Res. 20(2), 179–205 (1973).

    Google Scholar 

  26. J. R. Ledwell, E. T. Montgomery, K. L. Polzin, et al., “Mixing over Rough Topography in the Brazil Basin,” Nature 403(6766), 179–184 (2000).

    Article  Google Scholar 

  27. C. St. Laurent, S. Stringer, C. Garett, et al., “The Generation of Internal Tides at Abrupt Topography,” DeepSea Res. Pt. I 50(8), 987–1003 (2003).

    Google Scholar 

  28. D. L. Rudnik, T. J. Boyd, and R. F. Brainard, “From Tides to Mixing along the Hawaiian Ridge,” Science 301(5631), 355–357 (2003).

    Article  Google Scholar 

  29. J. M. Klymak, J. N. Moum, J. D. Nash, et al., “An Estimate of Energy Lost to Turbulence at the Hawaiian Ridge,” J. Phys. Oceanogr. 36(6), 1148–1164 (2005).

    Article  Google Scholar 

  30. M. H. Alford, M. C. Gregg, and M. A. Merrifield, “Structure, Propagation and Mixing of Energetic Baroclinic Tides in Mamala Bay, Oahu, Hawaii,” J. Phys. Oceanogr. 36(6), 997–1018 (2006).

    Article  Google Scholar 

  31. C. St. Laurent and J. D. Nash, “An Examination of the Radiative and Dissipative Properties of Deep Ocean Internal Tides,” Deep-Sea Res. Pt II 51(2–3), 3029–3042 (2004).

    Google Scholar 

  32. B. Ferron, H. Mercier, K. Speer, et al., “Mixing in the Romanche Fracture Zone,” J. Phys. Oceanogr. 28(10), 1929–1945 (1998).

    Article  Google Scholar 

  33. K. L. Polzin, J. M. Toole, J. R. Ledwell, et al., “Spatial Variability of Turbulent Mixing in the Abyssal Ocean,” Science 276(5309), 93–96 (1997).

    Article  Google Scholar 

  34. T. R. Osborn, “Estimates of the Local Rate of Vertical Diffusion from Dissipation Measurements,” J. Phys. Oceanogr. 10(1), 83–89 (1980).

    Article  Google Scholar 

  35. W. H. Munk and C. Wunsch, “Abyssal Recipes. II. Energetics of Tidal and Wind Mixing,” Deep-Sea Res. 45(12) Part I, 1977–2010 (1998).

    Google Scholar 

  36. B. A. Kagan and J. Sundermann, “Dissipation of Tidal Energy, Paleotides, and Evolution of the Earth-Moon System,” Adv. Geophys. 38, 179–266 (1996).

    Google Scholar 

  37. G. B. Egbert and R. D. Ray, “Significant Dissipation of Tidal Energy in the Deep Ocean Inferred from Satellite Altimeter Data,” Nature 405(6788), 775–778 (2000).

    Article  Google Scholar 

  38. G. B. Egbert and R. D. Ray, “Estimates of M2 Tidal Energy Dissipation from TOPEX/POSEIDON Altimeter Data,” J. Geophys. Res. 106(C10), 22475–22502 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Kagan.

Additional information

Original Russian Text © B.A. Kagan, A.A. Timofeev, E.V. Sofina, 2010, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2010, Vol. 46, No. 5, pp. 703–714.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagan, B.A., Timofeev, A.A. & Sofina, E.V. Seasonal variability of surface and internal M2 tides in the Arctic Ocean. Izv. Atmos. Ocean. Phys. 46, 652–662 (2010). https://doi.org/10.1134/S0001433810050105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433810050105

Key words

Navigation