Skip to main content
Log in

Template synthesis of 3D-structured macroporous oxides and hierarchical zeolites

  • Engineering Problems
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The synthesis of macroporous supports using nanosized templates, which are then removed from the final product by burning or dissolution, has been extensively developed since 1997. Here, we report the template synthesis of 3D-structured macroporous supports of different chemical natures, namely, alumina, titanium and zirconium dioxides, and hierarchical silicalite and Fe-silicalite with the zeolite ZSM-5 structure. The templates consist of monodisperse, close-packed, polystyrene spheres 250 to 1150 nm in diameter. The template synthesis affords a marked increase in the specific pore volume and in the external surface area of the porous oxides. The pore volume of granular alumina samples obtained in the absence and in the presence of the polystyrene template is 0.34 and 1.22 cm3/g, respectively. The specific external surface area of Fesilicalite with the ZSM-5 structure increases from 26.8 to 410 m2/g on passing from the sample synthesized without a template to the sample prepared in the presence of the polystyrene template. The textural properties of the new materials are very promising for adsorption and catalytic processes involving macromolecular compounds, such as catalytic refining of heavy petroleum fractions and biomass and lignin conversion into chemical products, including liquid hydrocarbons; for the pharmaceutical industry; and for adsorption of large molecules, including heavy metals, from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sato, T., Thermochim. Acta, 1985, vol. 88, p. 69.

    Article  CAS  Google Scholar 

  2. Dzis’ko, V.A. and Ivanova, A.S., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 1985, vol. 15, no. 5, p. 110.

    Google Scholar 

  3. Kul’ko, E.V., Ivanova, A.S., Litvak, G.S., Kryukova, G.N., and Tsybulya, S.V., Kinet. Catal., 2004, vol. 45, no. 5, p. 714.

    Article  Google Scholar 

  4. Tao, Y., Abrams, L., and Kaneko, K., Chem. Rev., 2006, vol. 106, no. 3, p. 896.

    Article  CAS  Google Scholar 

  5. Verboekend, D., Catal. Sci. Technol., 2011, vol. 1, p. 879.

    Article  CAS  Google Scholar 

  6. Antonietti, M., Berton, B., Goltner, C., and Hentze, H.P., Adv. Mater., 1998, vol. 10, p. 154.

    Article  CAS  Google Scholar 

  7. Imhof, A. and Pine, D.J., Nature, 1997, vol. 389, p. 948.

    Article  CAS  Google Scholar 

  8. Davis, S.A., Burkett, S.L., Mendelson, N.H., and Mann, S., Nature, vol. 385, p. 420.

  9. Holland, B.T., Blanford, C.F., and Stein, A., Science, 1998, vol. 281, p. 538.

    Article  CAS  Google Scholar 

  10. Geissler, M. and Xia, Y.N., Adv. Mater., 2004, vol. 16, p. 1249.

    Article  CAS  Google Scholar 

  11. Yang, P., Deng, T., Zhao, D., Feng, P., Pine, D., Chmelka, B.F., Whitesides, G.M., and Stucky, G.D., Science, 1998, vol. 282, p. 2244.

    Article  CAS  Google Scholar 

  12. Deng, Y.H., Cai, Y., Sun, Z.K., Liu, J., Liu, C., Wei, J., Li, W., Liu, C., Wang, Y., and Zhao, D.Y., J. Am. Chem. Soc., 2010, vol. 132, p. 8466.

    Article  CAS  Google Scholar 

  13. Janssen, A.H., Jacobsen, C.J.H., Koster, A.J., and Jong, K.P., Micr. Mes. Mater., 2003, vol. 65, p. 59.

    Article  CAS  Google Scholar 

  14. Ya-Ping Guo, H.-J., Ya-Jun Guo, Li-Hua Guo, Lian-Feng Chu, and Cui-Xiang Guo, Chem. Eng. J., 2011, vol. 166, p. 391.

    Article  CAS  Google Scholar 

  15. Srivastava, R., Chem. Commun., 2006, p. 4489.

    Google Scholar 

  16. Holland, B.T. and Stein, A., J. Am. Chem. Soc., 1999, vol. 121, p. 4308.

    Article  CAS  Google Scholar 

  17. Zhu, G., Gao, F., Li, D., Li, Y., Wang, R., Gao, B., Li, B., Guo, Y., Xu, R., Liu, Z., Terasaki, O., Carrero, G.V.A., Rodríguez, R., Linares, M., and Peso, G.L., J. Mater. Chem., 2001, vol. 11, p. 1687.

    Article  CAS  Google Scholar 

  18. Tosheva, L. and Sterte, J.V.V., Micr. Mes. Mater., 2000, vols. 35-36, p. 621.

    Article  CAS  Google Scholar 

  19. Tao, Y., Langmuir, 2005, vol. 21, p. 504.

    Article  CAS  Google Scholar 

  20. Baojian Zhang, Davis, S.A, Mendelson, N.H., and Mann, S., Chem. Commun., 2000, p. 781.

    Google Scholar 

  21. Dong, A.Y.W., Tang, Y., Ren, N., Zhang, Y., Yue, Y., and Gao, Z., Adv. Mater., 2002, volo. 14, p. 926.

    Article  CAS  Google Scholar 

  22. Zhang, B., Chem. Mater., 2002, no. 14, p. 1369.

    Google Scholar 

  23. Zampieri, A., Selvam, T., Schwieger, W., Rudolph, A., Hermann, R., Sieber, H., and Greil, P., Mater. Sci. Eng., 2006, vol. 26, p. 130.

    Article  CAS  Google Scholar 

  24. Valtchev, V., Faust, A.C., and Vidal, L., Angew. Chem. Int. Ed., 2003, vol. 42, p. 2782.

    Article  CAS  Google Scholar 

  25. Wang, L., Shan, Z., Liu, S., Du, Y., and Xiao, F.S., Coll. Surf., A, 2009, vol. 340, p. 126.

    Article  CAS  Google Scholar 

  26. Holm, M.S., Taarning, E., Egeblad, K., and Christensen, C.H., Catal. Today, 2011, vol. 168, p. 3.

    Article  CAS  Google Scholar 

  27. Qu, F., Lin, H., Wu, X., Li, X., Qiu, Sh., and Zhu, G., Solid State Sci., 2010, vol. 12, p. 851.

    Article  CAS  Google Scholar 

  28. Halma, M., Castro, K.A.D.F., Prévot, V., Forano, C., Wypych, F., and Nakagaki, Sh., J. Mol. Catal. A: Chem., 2009, vol. 310, p. 42.

    Article  CAS  Google Scholar 

  29. Zhang, A., Chen, Ch., Kuraoka, E., and Kumagai, M., Sep. Purif. Technol., 2008, vol. 62, p. 407.

    Article  Google Scholar 

  30. Ma, T.Y., Zhang, X.J., and Yuan, Zh.Y., Micr. Mes. Mater., 2009, vol. 123, p. 234.

    Article  CAS  Google Scholar 

  31. Zou, D., Sun, L., Aklonis, J.J., and Salovey, R., J. Polym. Sci., Part A: Polym. Chem., 1992, vol. 30, p. 1463.

    Article  CAS  Google Scholar 

  32. Zou, D., Ma, S., Guan, R., Park, M., Sun, L., Aklonis, J.J., and Salovey, R., J. Polym. Sci., Part A: Polym. Chem., 1992, vol. 30, p. 137.

    Article  CAS  Google Scholar 

  33. Song, Zh. and Poehlein, G.W., J. Coll. Interf. Sci., 1989, vol. 128, no. 2, p. 501.

    Article  CAS  Google Scholar 

  34. Parkhomchuk, E.V., Sashkina, K.A., Rudina, N.A., Okunev, A.G., and Parmon, V.N., Al’tern. Energet. Ekol., 2011, vol. 10, no. 102, p. 107.

    Google Scholar 

  35. Parkhomchuk, E.V., Vanina, M.P., and Preis, S., Catal. Commun., 2008, vol. 9. no. 3, p. 381.

    Article  Google Scholar 

  36. Treacy, M.M.J., Higgins, J.B., and Ballmoos, R., Collection of Simulated XRD Powder Patterns for Zeolites, New York: Elsevier, 1996, 3rd ed.

    Google Scholar 

  37. Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area and Porosity, New York: Academic, 1982.

    Google Scholar 

  38. Donk, S., Janssen, A.H., Bitter, J.H., and Jong, K.P., Catal. Rev., 2003, vol. 45, no. 2, p. 297.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.V. Parkhomchuk, K.A. Sashkina, N.A. Rudina, N.A. Kulikovskaya, V.N. Parmon, 2012, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parkhomchuk, E.V., Sashkina, K.A., Rudina, N.A. et al. Template synthesis of 3D-structured macroporous oxides and hierarchical zeolites. Catal. Ind. 5, 80–89 (2013). https://doi.org/10.1134/S2070050412040150

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050412040150

Keywords

Navigation