Skip to main content
Log in

Effect of coagulating agent viscosity on the kinetics of formation, morphology, and transport properties of cellulose nanofiltration membranes

  • Polymer Membranes
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Low-viscous coagulating agents are tradionally used to precipitate polymers from their solutions and obtain films and fibers from them; they represent, as a rule, the combinations of solvent and nonsolvent of the polymer used. At the same time, since the structure of the precipitated polymer is formed under non-equilibrium conditions, the influence of the coagulant viscosity can be quite substantial. The influence of the viscosity of the medium on the formation of structure, morphology, and transport characteristics of the precipitated polymer is studied by example of forming of the cellulose membranes from solution in N-methyl-morpholine N-oxide using some proton-donor coagulants. In this regard, the interdiffusion processes proceeding at the contact of cellulose solutions and coagulating agents (water, propylene glycol, glycerin) are explored using the laser interferometry method. Varying the precipitator viscosity allows one to change the rate of formation and correspondingly the morphology of the cellulose films. In turn, the membrane structure determines its transport characteristics, which were assessed by the filtration of aprotic media with anionic dyes—Orange II and Remazol Brilliant Blue R. The application of the low-viscous precipitator provides the formation of a uniform film structure in the bulk, but leads to development of defects close to the surface, while a viscous medium promotes the formation of a relatively thin dense shell on the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Drioli and L. Giorno, Encyclopedia of Membranes (Springer, Berlin, 2016).

    Book  Google Scholar 

  2. N. Hilal, H. Al-Zoubi, N. A. Darwish, A. W. Mohammad, and M. A. Arabi, Desalination 170, 281 (2004).

    Article  CAS  Google Scholar 

  3. M. Paul and S. D. Jons, Polymer 103, 417 (2016).

    Article  CAS  Google Scholar 

  4. K. P. Lee, T. C. Arnot, and D. Mattia, J. Membr. Sci. 370 (1–2), 1 (2011).

    Article  CAS  Google Scholar 

  5. A. F. Ismail, K. C. Khulbe, and T. Matsuura, in Gas Separation Membranes: Polymeric and Inorganic (Springer, Berlin, 2015).

    Book  Google Scholar 

  6. P. Anastas and N. Eghbali, Chem. Soc. Rev. 39, 301 (2010).

    Article  CAS  Google Scholar 

  7. B. S. Lalia, V. Kochkodan, R. Hashaikeh, and N. Hilal, Desalination 326, 77 (2013).

    Article  CAS  Google Scholar 

  8. G. R. Guillen, Y. Pan, M. Li, and E. M. V. Hoek, Ind. Eng. Chem. Res. 50, 3798 (2011).

    Article  CAS  Google Scholar 

  9. D.-M. Wang and J.-Y. Lai, Curr. Opin. Chem. Eng. 2 (2), 229 (2013).

    Article  Google Scholar 

  10. P. van de Witte, P. J. Dijkstra, J. W. A. Berg, and J. Feijen, J. Membr. Sci. 117, 1 (1996).

    Article  CAS  Google Scholar 

  11. J. G. Wijmans, J. Kant, M. H. V. Mulder, and C. A. Smolders, Polymer 26, 1539 (1985).

    Article  CAS  Google Scholar 

  12. A. J. Reuvers, F. W. Altena, and C. A. Smolders, J. Polym. Sci., Part B: Polym Phys. 24, 793 (1986).

    Article  CAS  Google Scholar 

  13. S.-G. Li, Th. van den Boomgaard, C. A. Smolders, and H. Strathmann, Macromolecules 29, 2053 (1996).

    Article  CAS  Google Scholar 

  14. G. R. Guillen, G. Z. Ramon, H. P. Kavehpour, R. B. Kaner, and E. M. V. Hoek, J. Membr. Sci. 431, 212 (2013).

    Article  CAS  Google Scholar 

  15. T. F. Liebert, T. J. Heinze, and K. J. Edgar, in Cellulose Solvents: For Analysis, Shaping and Chemical Modification (Am. Chem. Soc., Washington, 2010).

    Book  Google Scholar 

  16. C. Olsson and G. Westman, in Cellulose-Fundamental Aspects, Ed. by T. van de Ven and L. Godbout (InTech, Rijeka, 2013), p. 143.

  17. T. Budtova and P. Navard, Cellulose 23, 5 (2016).

    Article  CAS  Google Scholar 

  18. C. L. McCormick, P. A. Callais, and B. H. J. Hutchinson, Macromolecules 18, 2394 (1985).

    Article  CAS  Google Scholar 

  19. C. Zhang, R. Liu, J. Xiang, H. Kang, Z. Liu, and Y. Huang, J. Phys. Chem. B 118 (31), 9507 (2014).

    Article  CAS  Google Scholar 

  20. Z. Wang, S. Liu, Y. Matsumoto, and S. Kuga, Cellulose 19, 393 (2012).

    Article  CAS  Google Scholar 

  21. H. Wang, G. Gurau, and R. D. Rogers, Chem. Soc. Rev. 41, 1519 (2012).

    Article  CAS  Google Scholar 

  22. M. Isik, H. Sardon, and D. Mecerreyes, Int. J. Mol. Sci. 15, 11922 (2014).

    Article  CAS  Google Scholar 

  23. A. Pinkert, K. N. Marsh, S. Pang, and M. P. Staiger, Chem. Rev. 109, 6712 (2009).

    Article  CAS  Google Scholar 

  24. L. K. J. Hauru, M. Hummel, A. W. T. King, I. Kilpeläinen, and H. Sixta, Biomacromolecules 13, 2896 (2012).

    Article  CAS  Google Scholar 

  25. M. Gericke, T. Liebert, O. A. El Seoud, and T. Heinze, Macromol. Mater. Eng. 296, 483 (2011).

    Article  CAS  Google Scholar 

  26. J. Tao, T. Kishimoto, S. Suzuki, M. Hamada, and N. Nakajima, Holzforschung 70, 519 (2016).

    CAS  Google Scholar 

  27. X. Li, Y. Zhang, J. Tang, A. Lan, Y. Yang, M. Gibril, and M. Yu, J. Polym. Res. 23 (2), 1 (2016).

    Article  Google Scholar 

  28. R. Rinaldi, Chem. Commun. 47, 511 (2011).

    Article  CAS  Google Scholar 

  29. H. P. Gelbke, T. Göen, M. Mäurer, and S. I. Sulsky, Crit. Rev. Toxicol. 39 (S2), 1 (2009).

    Article  CAS  Google Scholar 

  30. L. K. Golova, I. S. Makarov, E. V. Matukhina, and V. G. Kulichikhin, Polym. Sci., Ser. A 52 (11), 1209 (2010).

    Article  Google Scholar 

  31. T. Rosenau, A. Potthast, H. Sixta, and P. Kosma, Prog. Polym. Sci. 26 (9), 1763 (2001).

    Article  CAS  Google Scholar 

  32. V. G. Kulichikhin, L. K. Golova, I. S. Makarov, G. N. Bondarenko, A. K. Berkovich, and S. O. Ilyin, Polym. Sci., Ser. C 58 (1), 74 (2016).

    Article  CAS  Google Scholar 

  33. V. V. Makarova, S. V. Antonov, T. V. Brantseva, V. G. Kulichikhin, and T. S. Anokhina, Polym. Sci., Ser. A 58 (5), 732 (2016).

    Article  Google Scholar 

  34. V. V. Makarova, S. V. Antonov, T. A. Anokhina, and V. V. Volkov, J. Phys.: Conf. Ser. 751, 012045 (2016).

    Google Scholar 

  35. L. K. Golova, Fibre Chem. 28 (1), 5 (1996).

    Article  Google Scholar 

  36. V. Makarova and V. Kulichikhin, in Interferometry-Research and Applications in Science and Technology, Ed. by I. Padron (InTech, Rijeka, 2011), p. 395.

  37. A. Malkin, A. Askadsky, A. Chalykh, and V. Kovriga, Experimental Methods of Polymer Physics (Mir, Moscow, 1983).

    Google Scholar 

  38. C. Matano, J. Phys. Jpn. 8 (3), 109 (1933).

    CAS  Google Scholar 

  39. Y. Marcus, Chem. Soc. Rev. 22 (6), 409 (1993).

    Article  CAS  Google Scholar 

  40. Handbook of Biochemistry and Molecular Biology, Ed. by R. L. Lundblad and F. Macdonald (CRC Press, New York, 2010).

  41. T. S. Anokhina, A. A. Yushkin, I. S. Makarov, V. Y. Ignatenko, A. V. Kostyuk, S. V. Antonov, and A. V. Volkov, Pet. Chem. 56 (11), 1085 (2016).

    Article  CAS  Google Scholar 

  42. J. Geens, B.Van der Bruggen, and C. Vandecasteele, Sep. Purif. Technol. 48, 255 (2006).

    Article  CAS  Google Scholar 

  43. B.Van der Bruggen, M. Mänttäri, and M. Nyström, Sep. Purif. Technol. 63, 251 (2008).

    Article  Google Scholar 

  44. B.Van der Bruggen, J. Schaep, D. Wilms, and C. Vandecasteele, J. Membr. Sci. 156, 29 (1999).

    Article  Google Scholar 

  45. G. E. Gaides and A. J. McHugh, Polymer 30, 2118 (1989).

    Article  CAS  Google Scholar 

  46. K.-Y. Lin, D.-M. Wang, and J.-Y. Lai, Macromolecules 35, 6697 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Ilyin.

Additional information

Original Russian Text © S.O. Ilyin, V.V. Makarova, T.S. Anokhina, A.V. Volkov, S.V. Antonov, 217, published in Vysokomolekulyarnye Soedineniya, Seriya A, 217, Vol. 59, No. 5, pp. 437–446.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyin, S.O., Makarova, V.V., Anokhina, T.S. et al. Effect of coagulating agent viscosity on the kinetics of formation, morphology, and transport properties of cellulose nanofiltration membranes. Polym. Sci. Ser. A 59, 676–684 (2017). https://doi.org/10.1134/S0965545X17050054

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X17050054

Navigation