Skip to main content
Log in

The stability of herpes simplex virus type I genomes in infected Vero cells undergoing viral induced apoptosis

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Maintaining the viral genome intact following infection and prior to replication is critical to the virus life cycle. Here we report an analysis of the stability of herpes simplex virus type 1 (HSV-1) genomes, relative to host chromosomal DNA, in infected cells as a function of viral induced apoptosis. The results show that, in the absence of DNA replication, the input genomes of wild-type (KOS), and replication compromised ICP27 deleted (d27-1) virus are remarkably stable. Intracellular half-lives of their genomes exceeded 24 hours. In contrast, the half-life of replication incompetent ICP4 deleted (d120) viral genomes were significantly less (approximately 8 hours). Interestingly, it was also noted that in cells infected under conditions permissible for replication, viral DNA replication occurs, even in cells undergoing apoptosis. The possibility that the genome structure and replication compartment formation provide protection to the HSV-1 genome from degradation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aubert M, Blaho JA (1999). The herpes simplex virus type 1 regulatory protein ICP2 7 Is required for the prevention of apoptosis in infected human cells. J Virol 73: 2803–2813.

    CAS  PubMed  Google Scholar 

  • Aubert M, O’Toole J, Blaho JA (1999). Induction and prevention of apoptosis in human HEp-2 cells by herpes simplex virus type 1. J Virol 73: 10359–10370.

    CAS  PubMed  Google Scholar 

  • Aubert M, Rice SA, Blaho JA (2001). Accumulation of herpes simplex virus type 1 early and leaky-late proteins correlates with apoptosis prevention in infected human HEp-2 cells. J Virol 75: 1013–1030.

    Article  CAS  PubMed  Google Scholar 

  • Benetti L, Munger J, Roizman B (2003). The herpes simplex virus 1 Us3 protein kinase blocks caspase-dependent double cleavage and activation of the proapoptotic protein BAD. J Virol 77: 6567–6573.

    Article  CAS  PubMed  Google Scholar 

  • Cui C, Griffiths A, Li G, Silva LM, Kramer MF, Gasterland T, Wang XJ, Coen DM (2006). Prediction and identification of herpes simplex virus 1-encoded microRNAs. J Virol 80: 5499–5508.

    Article  CAS  PubMed  Google Scholar 

  • Cunningham C, Davison AJ (1993). A cosmid-based system for constructing mutants of herpes simplex virus type 1. Virology 197: 116–124.

    Article  CAS  PubMed  Google Scholar 

  • DeLuca NA, Schaffer PA (1987). Activities of herpes simplex virus type 1 (HSV-1) ICP4 genes specifying nonsense peptides. Nucl Acids Res 15: 4491–4509.

    Article  CAS  PubMed  Google Scholar 

  • DeLuca NA, McCarthy A, Schaffer PA (1985). Isolation and characterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4. J Virol 56: 558–570.

    CAS  PubMed  Google Scholar 

  • Devi-Rao GB, Bloom DC, Stevens JG, Wagner EK (1994). Herpes simplex virus type 1 DNA replication and gene expression during explant-induced reactivation of latently infected murine sensory ganglia. J Virol 68: 1271–1282.

    CAS  PubMed  Google Scholar 

  • Galvan V, Brandimarti R, Munger J, Roizman B (2000). Bcl-2 blocks a caspase-dependent pathway of apoptosis activated by herpes simplex virus 1 infection in HEp-2 cells. J Virol 74: 1931–1938.

    Article  CAS  PubMed  Google Scholar 

  • Galvan V, Brandimarti R, Roizman B (1999). Herpes simplex virus 1 blocks caspase-3-independent and caspase-dependent pathways to cell death. J Virol 73: 3219–3226.

    CAS  PubMed  Google Scholar 

  • Galvan V, Roizman B (1998). Herpes simplex virus 1 induces and blocks apoptosis at multiple steps during infection and protects cells from exogenous inducers in a cell-type-dependent manner. Proc Natl Acad Sci U S A 95: 3931–3936.

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Gartner JJ, Sethupathy P, Hatzigeorgiou AG, Fraser NW (2006). Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature 442: 82–85.

    CAS  PubMed  Google Scholar 

  • Halford WP, Schaffer PA (2001). ICP0 is required for efficient reactivation of herpes simplex virus type 1 from neuronal latency. J Virol 75: 3240–3249.

    Article  CAS  PubMed  Google Scholar 

  • Jerome KR, Chen Z, Lang R, Torres MR, Hofmeister J, Smith S, Fox R, Froelich CJ, Corey L (2001). HSV and glycoprotein J inhibit caspase activation and apoptosis induced by granzyme B or Fas. J Immunol 167: 3928–3935.

    CAS  PubMed  Google Scholar 

  • Jerome KR, Fox R, Chen Z, Sears AE, Lee Hy, Corey L (1999). Herpes simplex virus inhibits apoptosis through the action of two genes, Us5 and Us3. J Virol 73: 8950–8957.

    CAS  PubMed  Google Scholar 

  • Kops ADB, Knipe DM (1988). Formation of DNA replication structures in herpes virus-infected cells requires a viral DNA binding protein. Cell 55: 857–868.

    Article  Google Scholar 

  • Koyama AH, Miwa Y (1997). Suppression of apoptotic DNA fragmentation in herpes simplex virus type 1-infected cells. J Virol 71: 2567–2571.

    CAS  PubMed  Google Scholar 

  • Leopardi R, Roizman B (1996). The herpes simplex virus major regulatory protein ICP4 blocks apoptosis induced by the virus or by hyperthermia. Proc Natl Acad Sci USA 93: 9583–9587.

    Article  CAS  PubMed  Google Scholar 

  • Leopardi R, Van Sant C, Roizman B (1997). The herpes simplex virus 1 protein kinase US3 is required for protection from apoptosis induced by the virus. Proc Natl Acad Sci U S A 94: 7891–7896.

    Article  CAS  PubMed  Google Scholar 

  • Liptak LM, Uprichard SL, Knipe DM (1996). Functional order of assembly of herpes simplex virus DNA replication proteins into prereplicative site structures. J Virol 70: 1759–1767.

    CAS  PubMed  Google Scholar 

  • Liu C, Xu HY, Liu DX (2001). Induction of caspase-dependent apoptosis in cultured cells by the avian coronavirus infectious bronchitis virus. J Virol 75: 6402–6409.

    Article  CAS  PubMed  Google Scholar 

  • Lukonis CJ, Weller SK (1996). Characterization of nuclear structures in cells infected with herpes simplex virus type 1 in the absence of viral DNA replication. J Virol 70: 1751–1758.

    CAS  PubMed  Google Scholar 

  • Margolis T, Sedarati F, Dobson A, Feldman LT, Stevens J (1992). Pathways of viral gene expression during acute neuronal infection with HSV-1. Virology 189: 150–160.

    Article  CAS  PubMed  Google Scholar 

  • McKnight S, Gavis E (1980). Expression of the herpes thymidine kinase gene in Xenopus laevis oocytes: an assay for the study of deletion mutants constructed in vitro. Nucl Acids Res 8: 5940.

    Google Scholar 

  • Minagawa H, Tanaka S, Toh Y, Mori R (1994). Detection of herpes simplex virus type 1-encoded RNA by polymerase chain reaction: different pattern of viral RNA detection in latently infected murine trigeminal ganglia following in vitro or in vivo reactivation. J Gen Virol 75: 647–650.

    Article  CAS  PubMed  Google Scholar 

  • Moxley M, Block T, Liu H-C, Fraser N, Perng G-C, Wechsler S, Su Y-H (2002). Herpes simplex virus type 1 infection prevents detachment of nerve growth factor-differentiated PC12 cells in culture. J Gen Virol 83: 1591–1600.

    CAS  PubMed  Google Scholar 

  • Munger J, Chee A, Roizman B (2001). The US3 protein kinase blocks apoptosis induced by the d120 mutant of herpes simplex virus 1 at a premitochondrial stage. J Virol 75: 5491–5497.

    Article  CAS  PubMed  Google Scholar 

  • Munger J, Roizman B (2001). The US3 protein kinase of herpes simplex virus 1 mediated the posttranslational modification of BAD and prevents BAD-induced programmed cell death in the absence of other viral proteins. Proc Natl Acad Sci U S A 98: 10410–10415.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen ML, Kraft RM, Blaho JA (2005). African green monkey kidney Vero cells require de novo protein synthesis for efficient herpes simplex virus 1-dependent apoptosis. Virology 336: 274–290.

    Article  CAS  PubMed  Google Scholar 

  • Quinlan MP, Chen LB, Knipe DM (1984). The intranuclear location of a herpes simplex virus DNA-binding protein is determined by the status of viral DNA replication. Cell 36: 857–868.

    Article  CAS  PubMed  Google Scholar 

  • Rice SA, Knipe DM (1990). Genetic evidence for two distinct transactivation functions of the herpes simplex virus alpha protein ICP27. J Virol 64: 1704–1715.

    CAS  PubMed  Google Scholar 

  • Sieg S, Yildirim Z, Smith D, Kayagaki N, Yagita H, Huang Y, Kaplan D (1996). Herpes simplex virus type 2 inhibition of Fas ligand expression. J Virol 70: 8747–8751.

    CAS  PubMed  Google Scholar 

  • Su Y-H, Moxley M, Ng AK, Lin J, Jordan R, Fraser NW, Block TM (2002). Stability and circularization of herpes simplex virus type 1 genomes in quiescently infected PC12 cultures. J Gen Virol 83: 2943–2950.

    CAS  PubMed  Google Scholar 

  • Su Y-H, Zhang X, Wang X, Fraser NW, Block TM (2006). Evidence that the immediate early gene product, ICP4, is necessary for HSV-1 ICP4 deletion mutant strain d120 genome circularization in infected cells. J Virol (in press).

  • Taddeo B, Luo TR, Zhang W, Roizman B (2003). Activation of NF-κB in cells productively infected with HSV-1 depends on activated protein kinase R and plays no apparent role in blocking apoptosis. Proc Natl Acad Sci USA 100: 12408–12413.

    Article  CAS  PubMed  Google Scholar 

  • Tang Q, Li L, Ishov AM, Revol V, Epstein AL, Maul GG (2003). Determination of minimum herpes simplex virus type 1 components necessary to localize transcriptionally active DNA to ND10. J Virol 77: 5821–5828.

    Article  CAS  PubMed  Google Scholar 

  • Uprichard SL, Knipe DM (2003). Conformational changes in the herpes simplex virus ICP8 DNA-binding protein coincident with assembly in viral replication structures. J Virol 77: 7467–7476.

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Block TM, Steel L, Brenner DE, Su YH (2004). Preferential isolation of fragmented DNA enhances the detection of circulating mutated k-ras DNA. Clin Chem 50: 211–213.

    Article  CAS  PubMed  Google Scholar 

  • Yu KY, Kwon B, Ni J, Zhai Y, Ebner R, Kwon BS (1999). A newly identified member of tumor necrosis factor receptor superfamily (TR6) suppresses LIGHT-mediated apoptosis. J Biol Chem 274: 13733–13736.

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Roizman B (2000). Wild-type herpes simplex virus 1 blocks programmed cell death and release of cytochrome c but not the translocation of mitochondrial apoptosis-inducing factor to the nuclei of human embryonic lung fibroblasts. J Virol 74: 9048–9053.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Hsiu Su.

Additional information

This work was supported by National Institute of Health Grant NS 33768, The Institute for Hepatitis and Virus Research and an appropriation from the Commonwealth of Pennsylvania.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, YH., Zhang, X., Aiamkitsumrit, B. et al. The stability of herpes simplex virus type I genomes in infected Vero cells undergoing viral induced apoptosis. Journal of NeuroVirology 12, 375–386 (2006). https://doi.org/10.1080/13550280600975358

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280600975358

Keywords

Navigation