Skip to main content

Advertisement

Log in

Temperate-like stand dynamics in relict Mediterranean-fir (Abies pinsapo, Boiss.) forests from southern Spain

La dynamique des forêts reliques de sapin méditerranéen (Abies pinsapo, Boiss.) du sud de l’Espagne est identique à celle des peuplements tempérés

  • Original Article
  • Published:
Annals of Forest Science Aims and scope Submit manuscript

Abstract

Introduction and statement of the research questions

Gap dynamics have been widely studied in forests of Abies spp. from temperate and boreal regions. The local microclimate and competition for light have been identified as the main factors controlling changes in species composition and canopy structure, however little is known on dynamics of such forests in Mediterranean.

Experimental design and aims

We studied forest structure and dynamics of Abies pinsapo stands in southern Spain, in contrasting habitats and successional status. In addition past regeneration patterns and their relationship to canopy structure, disturbances and forest-use history were investigated.

Results

Stands structure attributes were within the range described for temperate conifer biomes. The age structure revealed two main cohorts comprised of a few > 100 year-old trees and abundant younger trees established in a single recruitment event after the stands were protected in the 1950s. Initial growth-rate analyses indicated that A. pinsapo regenerated mainly in small canopy gaps, while only 15% recruited from the forest understorey. For the last ten years, basal area increment was lower than 10 cm2 y−1 in 91% of studied trees and growth rate differences between trees narrowed.

Conclusion

Stand dynamics in A. pinsapo forests maintain general features of temperate fir forests. Tree establishment over time and current stand structure fit to known changes in forest use. Widespread growth decline trends might be linked to stand stagnation and global warming.

Résumé

Introduction et état des questions de recherche

Les dynamiques des trouées ont été largement étudiées dans les forêts d’Abies spp. à partir des régions tempérées et boréales. Le microclimat local et la compétition pour la lumière ont été identifiés comme les principaux facteurs de contrôle des changements dans la composition des espèces et la structure du couvert, mais on sait peu de choses sur la dynamique de ces forêts dans les écosystèmes méditerranéens.

Plan expérimental et objectifs

Nous avons étudié la structure de la forêt et la dynamique de peuplements d’Abies pinsapo dans le sud de l’Espagne, dans des habitats contrastés et dans des états d’évolution successifs. En outre, les modèles passés de régénération et leurs relations avec la structure du couvert, les perturbations et l’histoire de l’utilisation des forêts ont été étudiés.

Résultats

Les attributs de structure des peuplements se situent dans la gamme décrite pour les biomes de conifères tempérés. La structure des âges a révélé deux cohortes principales composées de quelques vieux arbres d’un âge supérieur à 100 ans, et de nombreux jeunes arbres établis dans un seul évènement de régénération après que les peuplements aient été protégés dans les années 1950. Les premières analyses des taux de croissance ont indiqué que A. pinsapo s’est régénéré principalement dans les petites trouées, tandis que seulement 15 % des arbres ont été recrutés dans le sous-bois. Au cours des dix dernières années, l’augmentation de la surface terrière a été inférieure à 10 cm2 an−1 chez 91 % des arbres étudiés et les différences entre les taux de croissance des arbres étaient réduites.

Conclusion

Les dynamique des peuplements d’A. pinsapo conservent les caractéristiques générales des forêts de sapins tempérés. L’installation des arbres et la structure actuelle des peuplements permettent de connaître les changements dans l’utilisation de la forêt. La baisse généralisée des tendances de croissance pourrait être liée à la stagnation du peuplement et au réchauffement de la planète.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams M.D. and Orwig D.A., 1996. A 300-year history of disturbance and canopy recruitment for co-occurring white pine and hemlock on the Allegheny Plateau, USA, J. Ecol. 84: 353–363.

    Article  Google Scholar 

  • Alvarez C.M., 1994. Los pinsapares malagueños en el recuerdo. In: Gestión y conservación de los pinsapares andaluces, Asociación forestal andaluza, pp. 77–90.

  • Antos J.A. and Parish R., 2002. Structure and dynamics of a nearly steady-state subalpine forest in south-central British Columbia, Canada, Oecologia 130: 126–135.

    Google Scholar 

  • Arista M., 1995. The structure and dynamics of an Abies pinsapo forest in Southern Spain. For. Ecol. Manage. 74: 81–89.

    Article  Google Scholar 

  • Aussenac G., 2002. Ecology and ecophysiology of circum-Mediterranean firs in the context of climate change. Ann. For. Sci. 59: 823–832.

    Article  Google Scholar 

  • Barbero M. and Quézel P., 1975. Les forets de Sapin sur le pourtour méditerranéen. Anal. Inst. Bot. Cabanilles 32: 1245–1289.

    Google Scholar 

  • Becerra-Parra M., 2006. Ordenación y aprovechamiento de los pinsapares rondeños durante el siglo XIX. La memoria de Antonio Láynez. Editorial La Serranía, SLL, Ronda, Spain.

    Google Scholar 

  • Benayas J.M.R., 1998. Growth and survival in Quercus ilex L. seedlings after irrigation and artificial shading on Mediterranean set-aside agricultural land. Ann. Sci. For. 55: 801–807.

    Article  Google Scholar 

  • Boisvenue C. and Running S.W., 2006. Impacts of climate change on natural forest productivity-evidence since the middle of the 20th century. Global Change Biol. 12: 1–12.

    Article  Google Scholar 

  • Brady K.U., Kruckeberg A.R., and Bradshaw Jr. H.R., 2005. Evolutionary ecology of plant adaptation to serpentine soils. Ann. Rev. Ecol. Evol. Syst. 36: 43–66.

    Article  Google Scholar 

  • Ceballos L. and Bolaños M., 1928. Notas sobre el aspecto botánico-forestal de la Serranía de Ronda y Grazalema, IFIE, Madrid.

    Google Scholar 

  • Coates K.D. and Burton P.J., 1997. A gap-based approach for development of silvicultural systems to address ecosystem management objectives. For. Ecol. Manage. 99: 337–354.

    Article  Google Scholar 

  • Dobrowolska A. and Veblen T.T., 2008. Treefall-gap structure and regeneration in mixed Abies alba stands in central Poland. For. Ecol. Manage. 255: 3469–3476.

    Article  Google Scholar 

  • Donnegan J.A. and Rebertus A.J., 1999. Rates and mechanisms of sub-alpine forest succession along an environmental gradient. Ecology 80: 1370–1384.

    Article  Google Scholar 

  • Dusan R., Stjepan M., Igor A., and Jurij D., 2007. Gap regeneration patterns in relationship to light heterogeneity in two old-growth beech-fir forest reserves in South East Europe. Forestry 80: 431–443.

    Article  Google Scholar 

  • Foster J.R. and Reiners W.A., 1986. Size distribution and expansion of canopy gaps in a northern Appalachian spruce-fir forest. Plant Ecol. 68: 109–114.

    Google Scholar 

  • Génova M., 2007. El crecimiento de Abies pinsapo y el clima de Grazalema: aportaciones dendroecológicas. Invest. Agr.: Sist. Recur. For. 16: 145–157.

    Google Scholar 

  • Grove A.T. and Rackham O., 2001. The nature of Mediterranean Europe: an ecological history, Yale University Press, New Haven.

    Google Scholar 

  • Holmes R.L., 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 43: 68–78.

    Google Scholar 

  • IPCC, 2007. Afforestation, reforestation, and deforestation (ARD) activities, IPCC special report on land Use, land-use change and forestry.

  • Kneeshaw D.D. and Bergeron Y., 1998. Canopy gap characteristics and tree replacement in the southeastern boreal forest. Ecology 79: 783–794.

    Article  Google Scholar 

  • Laguna M., 1868. El pinsapar de Ronda, Revista Forestal.

  • Liétor J., Linares J.C., Martín-García J.M., García-Ruíz R., and Carreira J.F., 2003. Relaciones suelo-planta en bosques de Abies pinsapo Boiss. Disponibilidad de nutrientes y estatus nutricional. Acta Botánica Malacitana 28: 89–104.

    Google Scholar 

  • Lookingbill R.T. and Zavala M.A., 2000. Spatial pattern of Quercus ilex and Quercus pubescens recruitment in Pinus halepensis dominated woodlands. J. Veg. Sci. 11: 607–612.

    Article  Google Scholar 

  • McCarthy J., 2001. Gap dynamics of forest trees: A review with particular attention to boreal forests. Environ. Rev. 9: 1–59.

    Article  Google Scholar 

  • Nagel T.A., Levanic T., and Diaci J., 2007. A dendroecological reconstruction of disturbance in an old-growth Fagus-Abies forest in Slovenia. Ann. For. Sci. 64: 891–897.

    Article  Google Scholar 

  • Nolet P., Delagrange S., Bouffard D., Doyon F., and Forget E., 2008. The successional status of sugar maple (Acer saccharum), revisited. Ann. For. Sci. 65: 208.

    Article  Google Scholar 

  • Nowacki G.J. and Abrams M.D., 1997. Radial-growth averaging criteria for reconstructing disturbance histories from presettlement-origin oaks. Ecol. Monogr. 67: 225–249.

    Google Scholar 

  • Oliver C.D. and Larson B.C., 1996. Overview of stand development patterns. In: Forest stand dynamics, Wiley, New York, pp. 145–167.

    Google Scholar 

  • Pausas J.G., 1999. Mediterranean vegetation dynamics: modelling problems and functional types. Plant Ecol. 140: 27–39.

    Article  Google Scholar 

  • Piovesan G., Di Filippo A., Alessandrini A., Biondi F., and Schirone B., 2005. Structure, dynamics and dendroecology of an old-growth Fagus forest in the Apennines. J. Veg. Sci. 16: 13–28.

    Google Scholar 

  • Proctor J., 1999. Toxins, nutrient shortages and droughts: the serpentine challenge. Trends Ecol. Evol. 14: 334–335.

    Article  Google Scholar 

  • Rozas V., 2005. Dendrochronology of pedunculate oak (Quercus robur L.) in an old-growth pollarded woodland in northern Spain: establishment patterns and the management history. Ann. For. Sci. 62: 13–22.

    Article  Google Scholar 

  • Sumner G.N., Romero R., Homar V., Ramis C., Alonso S., and Zorita E., 2003. An estimate of the effects of climate change on the rainfall of Mediterranean Spain by the late twenty first century. Clim. Dyn. 20: 789–805.

    Google Scholar 

  • Szymura T.H., 2005. Silver fir sapling bank in seminatural stand: Individuals architecture and vitality. For. Ecol. Manage. 212: 101–108.

    Article  Google Scholar 

  • Valladares F. and Pearcy R.W., 2002. Drought can be more critical in the shade than in the sun: a field study of carbon gain and photoinhibition in a Californian shrub during a dry El Niño year. Plant Cell Environ. 25: 749–759.

    Article  Google Scholar 

  • Veblen T.T., 1992. Regeneration dynamics. In: Glenn-Lewin D.C., Peet R.K., Veblen T.T. (Eds.), Plant succession: Theory and prediction, Chapman and Hall, London, pp. 152–187.

    Google Scholar 

  • Vilà M. and Sardans J., 1999. Plant competition in Mediterranean-type vegetation. J. Veg. Sci. 10: 281–294.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan C. Linares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linares, J.C., Carreira, J.A. Temperate-like stand dynamics in relict Mediterranean-fir (Abies pinsapo, Boiss.) forests from southern Spain. Ann. For. Sci. 66, 610 (2009). https://doi.org/10.1051/forest/2009040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009040

Keywords

Mots-clés

Navigation