Skip to main content
Log in

The potato Lhca3.St.1 promoter confers high and stable transgene expression in chrysanthemum, in contrast to CaMV-based promoters

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Theenhanced cauliflower mosaic virus 35S (dCaMV) promoter and the potatoLhca3.St.1 promoter were evaluated for their expressionabilities in chrysanthemum. The promoters were fused to theβ-glucuronidase(GUS) reporter gene with and without flanking matrix-associated regions (MARs).They were transferred into chrysanthemum viaAgrobacterium-mediated transformation. The quantitativeevaluation of GUS activity in a total of 127 independently derivedtransformantsestablished that in chrysanthemum the Lhca3.St.1 promoterwas 175 fold more active in the leaves than the dCaMV promoter was. The latterwas as poor in expression as the single CaMV promoter. The use of suchCaMV-based promoters in the genetic engineering of chrysanthemum should bediscouraged when high levels of transgene expression are desired. No clearinfluence of the presence of MARs was observed on the variability of GUS geneexpression, in contrast to earlier studies in tobacco. This may indicate apossible plant species dependent activity of MAR elements.Lhca3.St.1 promoter-driven GUS activity was relativelyhigher in the stem of chrysanthemum and proved stable over extensive timeperiods. Therefore this potato promoter is attractive to obtain high expressionlevels in chrysanthemum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benetka V. and Pavingerová D. 1995. Phenotypic differences in transgenic plants of chrysanthemum. Plant Breed. 114: 169–173.

    Google Scholar 

  • Bennett M.D. and Smith J.B. 1976. Nuclear DNA amounts in angiosperms. Phil. Trans. R. Soc. London B274: 227–274.

    Google Scholar 

  • Boase M.R., Bradley J.M. and Borst N.K. 1998. Genetic transformation mediated by Agrobacterium tumefaciens of florists'; chrysanthemum (Dendranthema X grandiflorum) cultivar ‘Peach Margaret’. In Vitro Cell Dev. Biol. - Plant 34: 46–51.

    Google Scholar 

  • Boase M.R., Butler R.C. and Borst N.K. 1998. Chrysanthemum cultivar-Agrobacterium interactions revealed by GUS expression time course experiments. Sci. Hort. 77: 89–107.

    Google Scholar 

  • Burchi G., Griesbach R.J., Mercuri A., De Benedetti L., Priore D. and Schiva T. 1995. In vivo electrotransfection: transient GUS expression in ornamentals. J. Genet. Breed. 49: 163–167.

    Google Scholar 

  • Conner A.J., Mlynárová L., Stiekema W.J. and Nap J.P. 1999. Gametophytic expression of GUS activity controlled by the potato Lhca3.St.1 promoter in tobacco pollen. J. Exp. Bot. 50: 1471–1479.

    Google Scholar 

  • Courtney-Gutterson N., Firoozabady E., Lemieux C., Nicholas J., Morgan A., Robinson K. et al. 1993. Production of genetically engineered color-modified chrysanthemum plants carrying a homologous chalcone synthase gene and their field performance. Acta. Hort. 336: 57–62.

    Google Scholar 

  • Courtney-Gutterson N., Napoli C., Lemieux C., Morgan A., Firoozabady E. and Robinson K.E.P. 1994. Modification of flower color in florist's chrysanthemum: production of a white-flowering variety through molecular genetics. Bio. Technol. 12: 268–271.

    Google Scholar 

  • de Jong J., Rademaker W. and van Wordragen M.F. 1993. Restoring adventitious shoot formation on chrysanthemum leaf explants following cocultivation with Agrobacterium tumefaciens. Plant Cell Tis. Organ Cul. 32: 263–270.

    Google Scholar 

  • deJ ong J., Mertens M.M.J. and Rademaker W. 1994. Stable expression of the GUS reporter gene in chrysanthemum depends on binary plasmid T-DNA. Plant Cell Rep. 14: 59–64.

    Google Scholar 

  • de Jong J., Rademaker W. and Ohishi K. 1995. Agrobacterium-mediated transformation of chrysanthemum. Plant Tis. Cul. Biotech. 1: 38–42.

    Google Scholar 

  • De Loose M., Danthinne X., Van Bockstaele E., Van Montagu M. and Depicker A. 1995. Different 5′ leader sequences modulate β-glucuronidase accumulation levels in transgenic Nicotiana tabacum plants. Euphytica 85: 209–216.

    Google Scholar 

  • Dolgov S.V., Mityshkina T.U., Rukavtsova E.B. and Buryanov Y.I. 1995. Production of transgenic plants of Chrysanthemum morifolium Ramat with the gene of Bac. thuringiensis δ-endotoxin. Acta Hort. 420: 46–47.

    Google Scholar 

  • Dolgov S.V., Mitiouchkina T.Y. and Skryabin K.G. 1997. Agrobacterial transformation of Chrysanthemum. Acta Hort. 447: 329–334.

    Google Scholar 

  • Fukai S., de Jong J. and Rademaker W. 1995. Efficient genetic transformation of chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) using stem segments. Breed Sci. 45: 179–184.

    Google Scholar 

  • Harpster M.H., Townsend J.A., Jones J.D.G., Bedbrook J. and Dunsmuir P. 1988. Relative strengths of the 35S cauliflower mosaic virus, 1′, 2′, and nopaline synthase promoters in transformed tobacco sugarbeet and oilseed rape callus tissue. Mol. Gen. Genet. 212: 182–190.

    Google Scholar 

  • Jefferson R.A., Kavanagh T.A. and Bevan M.W. 1987. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907.

    Google Scholar 

  • Lazo G.R., Stein P.A. and Ludwig R.A. 1991. A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Bio./Technol. 9: 963–967.

    Google Scholar 

  • Ledger S.E., Deroles S.C. and Given N.K. 1991. Regeneration and Agrobacterium-mediated transformation of chrysanthemum. Plant Cell Rep. 10: 195–199.

    Google Scholar 

  • Lemieux C.S., Firoozabady E. and Robinson K.E.P. 1990. Agrobacterium-mediated transformation of chrysanthemum. In: de Jong J. (ed.), Proc Eucarpia Symposium on Integration of in Vitro Techniques in Ornamental Plant Breeding. Pudoc, Wageningen, pp. 150–155.

  • Lowe J.M., Davey M.R., Power J.B. and Blundy K.S. 1993. A study of some factors affecting Agrobacterium transformation and plant regeneration of Dendranthema grandiflora Tzvelev (syn. Chrysanthemum morifolium Ramat.). Plant Cell Tissue Organ Cul. 33: 171–180.

    Google Scholar 

  • Machin B. and Scopes N. 1978. Chrysanthemums year round growing. Blandford Press Ltd, UK, 233 pp.

    Google Scholar 

  • Mlynárová L., Loonen A., Heldens J., Jansen R.C., Keizer P., Stiekema W.J. et al. 1994. Reduced position effect in mature transgenic plants conferred by the chicken lysozyme matrix-associated region. Plant Cell 6: 417–426.

    Google Scholar 

  • Mlynárová L., Jansen R.C., Conner A.J., Stiekema W.J. and Nap J.P. 1995. The MAR-mediated reduction in position effect can be uncoupled from copy number-dependent expression in transgenic plants. Plant Cell 7: 599–609.

    Google Scholar 

  • Mlynárová L., Keizer L.C.P., Stiekema W.J. and Nap J.P. 1996. Approaching the lower limits of transgene variability. Plant Cell 8: 1589–1599.

    Google Scholar 

  • Nap J.P., Keizer P. and Jansen R. 1993. First generation transgenic plants and statistics. Plant Mol. Biol. Rep. 11: 156–164.

    Google Scholar 

  • Nap J.P., van Spanje M., Dirkse W.G., Baarda G., Mlynárová L., Loonen A. et al. 1993. Activity of promoter of the Lhca3.St.1 gene, encoding the potato apoprotein 2 of the light-harvesting complex of photosystem I, in transgenic potato and tobacco plants. Plant Mol. Biol. 23: 605–612.

    Google Scholar 

  • Odell J.T., Nagy F. and Chua N.H. 1985. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313: 810–812.

    Google Scholar 

  • Pavingerová D., Dostál J., Bísková R. and Benetka V. 1994. Somatic embryogenesis and Agrobacterium-mediated transformation of chrysanthemum. Plant Sci. 97: 95–101.

    Google Scholar 

  • Renou J.P., Brochard P. and Jalouzot R. 1993. Recovery of transgenic chrysanthemum (Dendranthema grandiflora Tzvelev) after hygromycin resistance selection. Plant Sci. 89: 185–197.

    Google Scholar 

  • Robinson K.E.P. and Firoozabady E. 1993. Transformation of floriculture crops. Sci. Hort. 55: 83–99.

    Google Scholar 

  • Rout G.R. and Das P. 1997. Recent trends in the biotechnology of Chrysanthemum: a critical review. Sci. Hort. 69: 239–257.

    Google Scholar 

  • Shao H.S., Li J.H., Zheng X.Q. and Chen S.C. 1999. Cloning of the LEY cDNA from Arabidopsis thaliana and its transformation to Chrysanthemum morifolium. Acta Bot. Sin. 41: 268–271.

    Google Scholar 

  • Sherman J.M., Moyer J.W. and Daub M.E. 1998. A regeneration and Agrobacterium-mediated transformation system for genetically diverse Chrysanthemum cultivars. J. Amer. Soc. Hort. Sci. 123: 189–194.

    Google Scholar 

  • Sherman J.M., Moyer J.W. and Daub M.E. 1998. Tomato Spotted Wilt Virus resistance in chrysanthemum expressing the viral nucleocapsid gene. Plant Dis. 82: 407–414.

    Google Scholar 

  • Takatsu Y., Nishizawa Y., Hibi T. and Akutsu K. 1999. Transgenic chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) expressing a rice chitinase gene shows enhanced resistance to gray mould (Botrytis cinerea). Sci. Hort. 82: 113–123.

    Google Scholar 

  • Urban L.A., Sherman J.M., Moyer J.W. and Daub M.E. 1994. High frequency shoot regeneration and Agrobacterium-mediated transformation of chrysanthemum (Dendranthema grandiflora). Plant. Sci. 98: 69–79.

    Google Scholar 

  • van Wordragen M.F., de Jong J., Huitema H.B.M. and Dons H.J.M. 1991. Genetic transformation of chrysanthemum using wild type Agrobacterium strains; strain and cultivar specificity. Plant. Cell. Rep. 9: 505–508.

    Google Scholar 

  • van Wordragen M.F., de Jong J., Schornagel M.J. and Dons H.J.M. 1992. Rapid screening of host-bacterium interactions in Agrobacterium-mediated gene transfer to chrysanthemum, by using the GUS-intron gene. Plant. Sci. 81: 207–214.

    Google Scholar 

  • van Wordragen M.F., Honée G. and Dons H.J.M. 1993. Insect-resistant chrysanthemum calluses by introduction of a Bacillus thuringiensis crystal protein gene. Transgenic Res. 2: 170–180.

    Google Scholar 

  • Yepes L.M., Mittak V., Pang S.Z., Gonsalves C., Slightom J.L. and Gonsalves D. 1995. Biolistic transformation of chrysanthemum with the nucleocapsid gene of tomato spotted wilt virus. Plant Cell. Rep. 14: 694–698.

    Google Scholar 

  • Yepes L.M., Mittak V., Slightom J.L., Pang S.Z. and Gonsalves D. 1999. Agrobacterium tumefaciens versus biolistic-mediated transformation of the chrysanthemum cvs. Polaris and Golden Polaris with nucleocapsid protein genes of three tospovirus species. Acta. Hort. 482: 209–218.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Peter Nap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Annadana, S., Mlynárová, L., Udayakumar, M. et al. The potato Lhca3.St.1 promoter confers high and stable transgene expression in chrysanthemum, in contrast to CaMV-based promoters. Molecular Breeding 8, 335–344 (2002). https://doi.org/10.1023/A:1015212312928

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015212312928

Navigation