Skip to main content
Log in

Entanglement of Formation of an Arbitrary State of Two Rebits

  • Published:
Foundations of Physics Letters

Abstract

We consider entanglement for quantum states defined in vector spaces over the real numbers. Such real entanglement is different from entanglement in standard quantum mechanics over the complex numbers. The differences provide insight into the nature of entanglement in standard quantum theory. Wootters [Phys. Rev. Lett. 80, 2245 (1998)] has given an explicit formula for the entanglement of formation of two qubits in terms of what he calls the concurrence of the joint density operator. We give a contrasting formula for the entanglement of formation of an arbitrary state of two “rebits,” a rebit being a system whose Hilbert space is a 2-dimensional real vector space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Introduction to Quantum Computation and Information, H.-K. Lo, S. Popescu and T. Spiller, eds. (World Scientific, Singapore, 1998).

    Google Scholar 

  2. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys. Rev. A 52, R2493 (1995).

    Article  ADS  Google Scholar 

  4. A. M. Steane, “Error correcting codes in quantum theory,” Phys. Rev. Lett. 77, 793 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245 (1998).

    Article  ADS  Google Scholar 

  6. W. K. Wootters, “Local accessibility of quantum states,” in Complexity, Entropy and the Physics of Information, W. H. Zurek, ed. (Addison-Wesley, Redwood City, 1990), pp. 39-46.

    Google Scholar 

  7. S. L. Adler, Quaternionic Quantum Mechanics and Quantum Fields (Oxford University Press, New York, 1995).

    MATH  Google Scholar 

  8. E. C. G. Stueckelberg, “Quantum theory in real Hilbert space,” Helv. Phys. Acta 33, 727 (1960).

    MathSciNet  MATH  Google Scholar 

  9. S. Weinberg, “Testing quantum mechancs,” Ann. Phys. 194, 336 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Peres, “Separability criterion for density matrices,” Phys. Rev. Lett. 77, 1413 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. M. Horodecki, P. Horodecki, and R. Horodecki, “Separability of mixed states: Necessary and sufficient conditions,” Phys. Lett. A 223, 1 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046 (1996).

    Article  ADS  Google Scholar 

  13. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wooters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Horodecki, P. Horodecki, and R. Horodecki, “Mixed-state entanglement and distillation: Is there a ‘bound’ entanglement in nature?” Phys. Rev. Lett. 80, 5239 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. P. M. Hayden, M. Horodecki, and B. M. Terhal, “The asymptotic entanglement cost of preparing a quantum state,” unpublished, arXiv:quant-ph/0008134.

  16. S. Hill and W. K. Wootters, “Entanglement of a pair of quantum bits,” Phys. Rev. Lett. 78, 5022 (1997).

    Article  ADS  Google Scholar 

  17. E. Schrödinger, “Probability relations between separated systems,” Proc. Camb. Phil. Soc. 32, 446 (1936).

    Article  ADS  MATH  Google Scholar 

  18. E. T. Jaynes, “Information theory and statistical mechanics. II,” Phys. Rev. 108, 171 (1957).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. L. P. Hughston, R. Jozsa, and W. K. Wootters, “A complete classification of quantum ensembles having a given density matrix,” Phys. Lett. A 183, 14 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic, Dordrecht, 1995).

    MATH  Google Scholar 

  21. K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, “Volume of the set of separable states,” Phys. Rev. A 58, 883 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  22. S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caves, C.M., Fuchs, C.A. & Rungta, P. Entanglement of Formation of an Arbitrary State of Two Rebits. Found Phys Lett 14, 199–212 (2001). https://doi.org/10.1023/A:1012215309321

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012215309321

Navigation