Skip to main content
Log in

Amount of hydroxyl radical on calcium-ion-implanted titanium and point of zero charge of constituent oxide of the surface-modified layer

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

To compare the surface properties of calcium-ion (Ca2+)-implanted titanium with those of titanium and to investigate the mechanism of bone conductivity of Ca2+-implanted titanium, amounts of hydroxyl radical of Ca2+-implanted titanium and titanium were estimated. Also, the point of zero charge (p.z.c.) of oxide constituting surface oxides of Ca2+-implanted titanium and titanium was determined. Results showed that the amount of active hydroxyl radical on Ca2+-implanted titanium was found to be significantly larger than that on titanium, indicating that the number of electric-charging sites of Ca2+-implanted titanium in electrolyte is more than that of titanium. The p.z.c. values of rutile (TiO2), anatase (TiO2), and perovskite (CaTiO3), were estimated to be 4.6, 5.9, and 8.1, respectively. Thus, Ca2+-implanted titanium surface is charged more positively in bioliquid than titanium, accelerating the adsorption of phosphate ions. © 1998 Chapman & Hall

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Hanawa, K. Murakami and S. Kihara, In “Characterization and performance of calcium phosphate coatings for implants, ASTM STP 1196”, edited by E. Horowitz and J. E. Parr (American Society for Testing and Materials, Philadelphia, 1994) p. 170.

  2. T. Hanawa, Y. Nodasaka, H. Ukai, K. Murakami and K. Asaoka, J. Jpn. Soc. Biomater. 12 (1994) 209.

    Google Scholar 

  3. T. Hanawa, Y. Kamiura, S. Yamamoto, T. Kohgo, A. Amemiya, H. Ukai, K. Murakami and K. Asaoka, J. Biomed. Mater. Res. (in press).

  4. T. Hanawa, H. Ukai, K. Murakami and K. Asaoka, Mater. Trans. JIM 36 (1995) 438.

    Google Scholar 

  5. T. Hanawa, H. Ukai and K. Murakami, J. Electron Spectrosc. 63 (1993) 347.

    Google Scholar 

  6. T. Hanawa, K. Asami and K. Asaoka, Corros. Sci. 38 (1996) 1579.

    Google Scholar 

  7. Idem., ibid. 38 (1996) 2061.

  8. A. Kozawa, J. Electrochem. Soc. 106 (1959) 552.

    Google Scholar 

  9. M. Imai and M. Nishio, Sumitomo-Keikinnzoku-Giho 30 (1980) 72.

    Google Scholar 

  10. T. Wakamatsu and S. Mukai, Amer. Inst. Chem. Eng. Ser. 71 (1975) 81.

    Google Scholar 

  11. H. P. Boehm, Disc. Farad. Soc. 52 (1971) 264.

    Google Scholar 

  12. T. Morimoto and H. Naono, Bull. Chem. Soc. Jpn 46 (1973) 2000.

    Google Scholar 

  13. J. Westall and H. Hohl, Adv. Colloid. Interface Sci. 12 (1980) 265.

    Google Scholar 

  14. G. D. Parfitt, Prog. Surf. Membrane. Sci. 11 (1976) 181.

    Google Scholar 

  15. E. J. Kelly, Mod. Aspect. Electrochem. 14 (1982) 319.

    Google Scholar 

  16. T. Hanawa and M. Ota, Biomaterials 12 (1991) 767.

    Google Scholar 

  17. Idem., Appl. Surf. Sci. 55 (1992) 269.

    Google Scholar 

  18. L. L. Hench and E. G. Ethridge, Adv. Biomed. Eng. 5 (1975) 35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HANAWA, T., KON, M., DOI, H. et al. Amount of hydroxyl radical on calcium-ion-implanted titanium and point of zero charge of constituent oxide of the surface-modified layer. Journal of Materials Science: Materials in Medicine 9, 89–92 (1998). https://doi.org/10.1023/A:1008847014938

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008847014938

Keywords

Navigation