Skip to main content
Log in

Inhibition of apoptotic signaling pathways in cancer cells as a mechanism of chemotherapy resistance

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The extracellular microenvironment of tumors differs from most normal tissues. Many tumors have relatively acidic extracellular pH (pHe), although the intracellular pH (pHi) of tumor cells remains normal due to efficient maintenance of a large proton gradient across the membrane. This difference between tumors and normal tissues might be exploited therapeutically by disruption of the mechanisms which regulate pHi, so that tumor cells are killed by intracellular acid-induced injury. To investigate the mechanisms by which intracellular acidification leads to cell death, we have studied the roles of the anti-apoptotic gene bcl-2 and its pro-apoptotic binding partner bax, the Stress Activated Protein Kinases (SAPK/JNK), and the caspase proteases in mediating acid-induced cell death. While expression of bcl-2 in human bladder cancer MGH-U1 cells had no effect on acid-induced death, overexpression of bax enhanced cell death, consistent with its pro-apoptotic function. Inhibition of SAPK, through expression of a dominant negative mutant of its activator, SEK1 protected cells from acid-induced cell death. Caspase activation, as measured by poly(ADP-ribose) polymerase cleavage, was absent after lethal intracellular acidification. Consistent with this observation, inhibition of ICE proteases by the peptide z-VAD.fmk did not protect against acid-induced cell killing. We conclude that acid-induced cell death depends on bax and on SAPK signaling pathways but not on the caspase proteases. Therapeutic manipulation of bax and SAPK may enhance acid-induced tumor cell killing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tannock IF: Experimental Chemotherapy. In: Tannock IF, Hill RP (eds) The Basic Science of Oncology, pp. 338-359, 1992. McGraw-Hill.

  2. Wyllic AH, Kerr JF, Currie AR: Cell death: the significance of apoptosis. Int Rev Cytol 68: 251-306, 1980

    PubMed  Google Scholar 

  3. Kaufmann S: Induction of endonuclcolytic DNA clavage in human acute myelogenous leukemia cells by etoposide, camptothecin, and other cytotoxic anticancer drugs: A cautionary note. Cancer Res 49: 5870-5878, 1989

    PubMed  Google Scholar 

  4. Hannun YA: Apoptosis and the dilemma of cancer chemotherapy. Blood 89: 1845-1853, 1997

    PubMed  Google Scholar 

  5. Antonakopoulos GN, Darnton SJ, Newman J, Duffy JP, Matthews HR: Effects of chemotherapy on ultrastructure of oesophageal squamous cell carcinoma. Histopath 25: 447-454, 1994

    Google Scholar 

  6. Wheeler JA, Stephens LC, Tornos C, Eifel PJ, Ang KK, Milas L, Allen PK, Meyn RJ: ASTRO Research Fellowship: apoptosis as a predictor of tumor response to radiation in stage IB cervical carcinoma. Int J Rad Oncol Biol Phys 32: 1487-1493, 1995

    Article  Google Scholar 

  7. Tsumimoto Y, Cossman J, Jaffe E, Croce CM: Involvement of the bcl-2 gene in human follicular lymphoma. Science 228: 1440-1443, 1985

    PubMed  Google Scholar 

  8. Rao L, Debbas M, Sabbatini P, Hockenbery D, Korsmeyer S, White E: The adenovirus E1A proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bel-2 proteins. Proc Natl Acad Sci USA 89: 7742-7746, 1992

    PubMed  Google Scholar 

  9. Kane DJ, Sarafian TA, Anton R, Hahn H, Gralla EB, Valentine JS, Ord T, Bredesen DE: Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 262: 1274-1277, 1993

    PubMed  Google Scholar 

  10. Kamesaki S, Kamesaki H, Jorgensen TJ, Tanizawa A, Pommier Y, Cossman J: bcl-2 protein inhibits etoposide-induced apoptosis through its effects on events subsequent to topoisomerasc II-induced DNA strand breaks and their repair. Cancer Res 53: 4251-4256, 1993

    PubMed  Google Scholar 

  11. Fairgairn LJ, Cowling GJ, Dexter TM, Rafferty JA, Margison GP, Reipert B: Bcl-2 delay of alkylating agent-induced apoptotic death in a murine hemopoietic stem cell line. Mol Carcinogen 11: 49, 1994

    Google Scholar 

  12. Miyashita T, Reed JC: Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood 81: 151-157, 1993

    PubMed  Google Scholar 

  13. Kitada S, Takayama S, De RK, Tanaka S, Reed JC: Reversal of chemoresistance of lymphoma cells by antisense-mediated reduction of bcl-2 gene expression. Antisense Res Dev 4: 71-79, 1994

    PubMed  Google Scholar 

  14. Coustan-Smith E, Kitanaka A, Pui CH, McNinch L, Evans WE, Raimondi SC, Behm FG, Arico M, Campana D: Clinical relevance of BCL-2 overexpression in childhood acute lymphoblastic leukemia. Blood 87: 1140-1146, 1996

    PubMed  Google Scholar 

  15. Hermine O, Haioun C, Lepage E, d'Agay MF, Briere J, Lavignac C, Fillet G, Salles G, Marolleau JP, Dicbold J, Reyas F, Gaulard P: Prognostic significance of bcl-2 protein expression in aggressive non-Hodgkin's lymphoma. Groupe d'Etude des Lymphomes de l'Achilte (GELA). Blood 87: 265-272, 1996

    PubMed  Google Scholar 

  16. Dolc MG, Jasty R, Cooper MJ, Thompson CB, Nunez G, Castle VP: Bcl-xL is expressed in neuroblastoma cells and modulates chemotherapy-induced apoptosis. Cancer Res 55: 2576-2582, 1995

    PubMed  Google Scholar 

  17. Sumantran VN, Ealovega MW, Nunez G, Clarke MF, Wicha MS: Overexpression of Bcl-Xssensitizes MCF-7 cells to chemotherapy-induced apoptosis. Cancer Res 55: 2507, 1995

    PubMed  Google Scholar 

  18. Simonian PL, Grillot DA, Nunez G: Bcl-2 and Bcl-XL can differentially block chemotherapy-induced cell death. Blood 90: 1208-1216, 1997

    PubMed  Google Scholar 

  19. Krajewski S, Blomqvist C, Franssila K, Krajewska M, Wasenius VM, Niskanen E, Nordling S, Reed JC: Reduced expression of proapoptotic gene BAX is associated with poor response rates to combination chemotherapy and shorter survival in women with metastatic breast adenocarcinoma. Cancer Res 55: 4471-4478, 1995

    PubMed  Google Scholar 

  20. Oltvai ZN, Milliman CL, Korsmeyer SJ: Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74: 609-619, 1993

    Article  PubMed  Google Scholar 

  21. Greenblatt MS, Bennett WP, Hollstein M, Harris CC: Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54: 4855-4878, 1994

    PubMed  Google Scholar 

  22. Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T: p53 is required for radiation induced apoptosis in mouse thymocytes. Nature 362: 847-849, 1993

    Article  PubMed  Google Scholar 

  23. Lowe SW, Ruley HE, Jacks T, Housman DE: p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74: 957-967, 1993

    Article  PubMed  Google Scholar 

  24. Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE, Housman DE, Jacks T: p53 status and the efficacy of cancer therapy in vivo. Science 266: 807-810, 1994

    PubMed  Google Scholar 

  25. Wattel E, Preudhomme C, Hecquet B, Vanrumbeke M, Quesnel B, Dervite I, Morel P, Fcnaux P: p53 mutations are associated with resistance to chemotherapy and short sur vival in hematologic malignacies. Blood 84: 3148-3157, 1994

    PubMed  Google Scholar 

  26. Bedi A, Zehnbauer BA, Barber JP, Sharkis SJ, Jones RJ: Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia. Blood 83: 2038-2044, 1994

    PubMed  Google Scholar 

  27. Nooter K, Boersma AW, Oostrum RG, Burger H, Jochemsen AG, Stoter G: Constitutive expression of the c-H-ras oncogene inhibits doxorubicin-induced apoptosis and promotes cell survival in a rhabdomyosarcoma cell line. Br J Cancer 71: 556-561, 1995

    PubMed  Google Scholar 

  28. Davis RJ: The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 268: 14553-14556, 1993

    PubMed  Google Scholar 

  29. Crews CM, Erikson RI: Purification of a murine protein-tyrosine/threonine kinase that phosphorylates and activates the Erk-1 gene product: relationship to the fission yeast byr1 gene product. Proc Natl Acad Sci USA 89: 8205-8209, 1992

    PubMed  Google Scholar 

  30. Xia A, Dickens M, Raingeaud J, Davis RJ, Greenberg ME: Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270: 1326-1331, 1996

    Google Scholar 

  31. Sun H, Tonks NK, Bar-Sagi D: Inhibition of Ras-induced DNA synthesis by expression of the phosphatase MKP-1. Science 266: 285-288, 1994

    PubMed  Google Scholar 

  32. Minden A, Lin A, Smeal T, Derijard B, Cobb M, Davis R, Karin M: c-Jun N-terminal phosphorylation correlates with activation of the JNK subgroup but not the ERK subgroup of mitogen-activated protein kinases. Mol Cell Biol 14: 6683-6688, 1994

    PubMed  Google Scholar 

  33. Zanke BW, Rubic EA, Boudreau K, McGinnis M, Yan M, Templeton DJ, Woodgett JR: Insulation of mammalian MAP kinase pathways through formation of specific kinase:activator complexes. J Biol Chem 271: 29876-29881, 1996

    Article  PubMed  Google Scholar 

  34. Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M, Davis RJ: JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76: 1025-1037, 1994

    Article  PubMed  Google Scholar 

  35. Freshney NW, Rawlinson L, Guesdon F, Jones E, Cowley S, Hsuan J, Saklatvala J: Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell 78: 1039-1049, 1994

    PubMed  Google Scholar 

  36. Seimiya H, Mashima T, Toho M, Tsuruo T: c-Jun NH2-terminal kinase-mediated activation of interleukin-1beta converting enzyme/CED-3-like protease during anticancer drug-induced apoptosis. J Biol Chem 272: 4631-4636, 1997

    Article  PubMed  Google Scholar 

  37. Osborn MT, Chambers TC: Role of the stress-activated/c-Jun NH2-terminal protein kinase pathway in the cellular response to adriamycin and other chemotherapeutic drugs. J Biol Chem 271: 30950-30955, 1996

    Article  PubMed  Google Scholar 

  38. Derijard B, Raingeaud J, Barrett T, Wu IH, Han J, Ulevitch RJ, Davis RJ: Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science 267: 682-685, 1995

    PubMed  Google Scholar 

  39. Sanchez I, Hughes RT, Mayer BJ, Yee K, Woodgett JR, Avruch J, Kyriakis JM, Zon LI: Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-Jun. Nature 372: 794-798, 1994

    PubMed  Google Scholar 

  40. Lees-Miller SP, Chen YR, Anderson CW: Human cells contain a DNA-activated protoin kinase that phosphorylates si mian virus 40 T antigen, mouse p53, and the human Ku autoantigen. Mol Cell Biol 10: 6472-6481, 1990

    PubMed  Google Scholar 

  41. Kharbanda S, Ren R, Pandey P, Shafman TD, Feller SM, Weichselbaum RR, Kufe DW: Activation of the c-Abl tyrosine kinase in the stress response to DNA-damaging agents. Nature 376: 785-788, 1995

    Article  PubMed  Google Scholar 

  42. Kharbanda S, Pandey P, Ren R, Mayer B, Zon L, Kufe D: c-Abl activation regulates induction of the SEK1/stress-activated protein kinase pathway in the cellular response to 1-beta-D-arabinofuranosylcytosine. J Biol Chem 270: 30278-30281, 1995

    Article  PubMed  Google Scholar 

  43. Landry J, Huot J: Modulation of actin dynamics during stress and physiological stimulation by a signaling pathway involving p38 MAP kinase and heat-shock protein 27. Biochem Cell Biol 73: 703-707, 1995

    PubMed  Google Scholar 

  44. Guay J, Lambert H, Gingras-Breton G, Lavoie JN, Huot J, Landry J: Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 110: 357-368, 1997

    PubMed  Google Scholar 

  45. Zanke BW, Boudreau K, Rubie E, Winnett E, Tibbles LA, Zon LI, Kyriakis JM, Liu F-F, Woodgett JR: The stress-activated protein kinase pathway mediates cell death following injury induced by cis-platinum, UV radiation or heat. Curr Biol 6: 606-613, 1996

    Article  PubMed  Google Scholar 

  46. Chen YR, Meyer CF, Tan TH: Persistent activation of c-Jun N terminal kinase 1 (JNK1) in gamma radiation induced apoptosis. J Biol Chem 271: 631-634, 1996

    Article  PubMed  Google Scholar 

  47. Zanke BW, Lee C, Arab SA, Tannock IF: Death of tumor cells after intracellular acidification is dependent on SAPK (JNK) activation and can not be inhibited by BCL-2 expression or ICE inhibition. Cancer Res (in press), 1998

  48. Maroney AC, Glicksman MA, Basma AN, Walton KM, Knight E, Murphy CA, Barlett BA, Finn JP, Angeles T, Matsuda Y, Neff NT, Dionne CA: Moroneuron apoptosis is blocked by CEP-1347 (KT 7515), a novel inhibitor of the JNK signaling pathway. J Neurosci 18: 104-111, 1998

    PubMed  Google Scholar 

  49. Yang DD, Kuan C-Y, Whitmarsh AJ, Rincon M, Zheng TS, Davis RJ, Rakic P, Flavell R: Absence of acxitotoxicity-induced apoptosis in the hippocampus of mice lacking the JNK3 gene. Nature 389: 865-870, 1997

    Article  PubMed  Google Scholar 

  50. Seimiya H, Mashima T, Toho M, Tsuruo T: c-Jun NH2-terminal kinase-mediated activation of interleukin-1 beta converting enzyme/CED-3-like protease during anticancer drug-induced apoptosis. J Biol Chem 272: 4631-4636, 1997

    Article  PubMed  Google Scholar 

  51. Verheij M, Bose R, Lin XH, Yao B, Jarvis WD, Grant S, Birrer MJ, Szabo E, Zon LI, Kyriakis JM, Haimovitz-Friedman A, Fuks Z, Kolesnick RN: Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 380: 75-79, 1996

    Article  PubMed  Google Scholar 

  52. Chen G, Shu J, Stacey DW: Oncogenic transformation potentiates apoptosis, S-phase arrest and stress-kinase activation by etoposide. Oncogene 15: 1643-1651, 1997

    Article  PubMed  Google Scholar 

  53. Park DS, Stefanis L, Yan CYI, Farinelli SE, Greene LA: Ordering the cell death pathway. J Biol Chem 271: 21898-21905, 1997

    Google Scholar 

  54. Maundrell K, Antonsson B, Magnenat E, Camps M, Muda M, Chabert C, Gillieron C, Boschert U, Vial-Knecht E, Martinou JC, Arkinstall S: Bcl-2 undergoes phosphorylation by c-Jun N-terminal kinase/stress-activated protein kinases in the presence of the constitutively active GTP-binding protein Racl. J Biol Chem 272: 25238-25242, 1997

    Article  PubMed  Google Scholar 

  55. Cahill MA, Peter ME, Kischkel FC, Chinnaiyan AM, Dixit VM, Krammer PH, Nordheim A: CD95 (APO-1/Fas) induces activation of SAP kinases downstream of ICE-like proteases. Oncogene 13: 2087-2096, 1996

    PubMed  Google Scholar 

  56. Teng DH-F, Perry III WL, Hogan JK, Baumgard M, Bell R, Berry S, Davis T, Frank D, Fryc C, Hattier T, Hu R, Jammulapati S, Janecki R, Leavitt A, Mitchell JT, Pero R, Sexton D, Scluocder M, Su P-H, Swedlund B, Kyriakis JM, Avruch J, Bartel P, Wong AKC, Oliphant A, Thomas A, Skolnick MH, Tavtigian SV: Human mitogen-activated protein kinase 4 as a candidate tumor suppressor. Cancer Res 57: 4177-4182, 1997

    PubMed  Google Scholar 

  57. Watanabe T, Tsuge H, Oh-Hara T, Naito M, Tsuruo T: Comparative study on reversal efficacy of SDZ PSC 833, cyclosporin A and verapamil on multidrug resistance in vitro and in vivo. Acta Oncol 34: 235-241, 1995

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haq, R., Zanke, B. Inhibition of apoptotic signaling pathways in cancer cells as a mechanism of chemotherapy resistance. Cancer Metastasis Rev 17, 233–239 (1998). https://doi.org/10.1023/A:1006075007857

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006075007857

Navigation