Skip to main content
Log in

Electrodes based on Magnéli phase titanium oxides: the properties and applications of Ebonex® materials

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Magnéli phases are a range of substoichiometric oxides of titanium of the general formula TinO2n−1, (where n is between 4 and 10) produced from high temperature reduction of titania in a hydrogen atmosphere. These blue/black ceramic materials exhibit a conductivity comparable to that of graphite and can be produced in a number of forms, such as tiles, rods, fibres, foams and powders. While these materials have been studied for many years, they have only recently received interest for use as ceramic electrode materials, commercially termed ‘Ebonex®’, and are beginning to challenge precious metal coated anodes for some applications in aggressive electrolytes. Other uses for these materials include electrowinning, electroplating, battery materials, impressed current cathodic protection anodes, electrochemical soil remediation, oxidation of organic wastes, flexible cable materials and electrophoresis. The scope of this review considers the structure and properties of Magnéli phase titanium oxide materials, together with their electrochemical behaviour and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Andersson, Acta Chem Scand. 11 (1957) 1641.

    Google Scholar 

  2. R. L. Clarke and S. K. Harnsburger, Am. Lab. 20 (1988) 6.

    Google Scholar 

  3. J. F. Houlihan and L. N. Mulay, Phys. Stat. Sol. B 61 (1974) 647.

    Google Scholar 

  4. R. F. Bartholomew and D. R. Frankl, Phys. Rev. 187(3) (1960) 828.

    Google Scholar 

  5. J. F. Houlihan and L. N. Mulay, Mater. Res. Bull. 6 (1971) 737.

    Google Scholar 

  6. J. B. Goodenough, ibid. 2(2) (1967) 165.

    Google Scholar 

  7. L. K. Keys and L. N. Mulay, J. Appl. Phys. 38 (1967) 1466.

    Google Scholar 

  8. D. Goldschmidt and M. Watanabe, Mater. Res. Bull. 20 (1985) 65.

    Google Scholar 

  9. R. J. Pollock, J. F. Houlihan, A. N. Bain and B. S. Coryea, ibid. 19 (1984) 17.

    Google Scholar 

  10. R. R. Miller-Folk and R. E. Noftle, J. Electroanal. Chem. 274 (1989) 257.

    Google Scholar 

  11. J. E. Graves, D. Pletcher, R. L. Clarke and F. C. Walsh, J. Appl. Electrochem. 21 (1991) 848.

    Google Scholar 

  12. J. K. Burdett and J. F. Mitchell, Chem. Mater. 5 (1993) 1465.

    Google Scholar 

  13. M. Amjad and D. Pletcher, J. Electroanal. Chem. 59 (1975) 61.

    Google Scholar 

  14. D. P. Sepa, A. Damjanovic and J. O'M. Bockris, Electrochim. Acta 12 (1967) 746.

    Google Scholar 

  15. S. Andersson, A. Sundholm and A. Magnéli, Acta Chem. Scand. 13 (1959) 989.

    Google Scholar 

  16. G. V. White et al., Ceramics, Adding the Value, Proceedings of the International Ceramic Conference, Austceram ‘92, Vol. 1, (1992), p. 365.

    Google Scholar 

  17. H. Anderson and P. Hyde, J. Phys. Chem. Solids 28 (1967) 1392.

    Google Scholar 

  18. Atraverda Ltd., Darenth House, Rotterham Road, Eckington, Sheffield, S31 9FH, UK, company literature (1995).

  19. M. Marezio, D. McWhan, P. Derniero and J. Remeica, J. Solid State Chem. 6 (1973) 213.

    Google Scholar 

  20. K. Nagarawa, Y. Kato and Y. Bando, J. Phys. Soc. Jpn. 29 (1970) 241.

    Google Scholar 

  21. L. K. Keys and L. N. Mulay, Phys. Rev. 154 (1967) 453.

    Google Scholar 

  22. L. N. Mulay and W. J. Danley, J. Apply. Phys. 41 (1970) 877.

    Google Scholar 

  23. W. J. Danley and L. N. Mulay, Mater. Res. Bull. 7 (1972) 739.

    Google Scholar 

  24. C. Schlenker, R. Buder, M. Schlenker, J. F. Houlihan and L. N. Mulay, Phys. Stat. Sol. B. 54 (1972) 247.

    Google Scholar 

  25. J. B. Goodenough, ‘Progress in Solid Chemistry’ Vol. 5 (edited by H. Reiss), Pergamon Press, New York (1971).

    Google Scholar 

  26. R. L. Clarke, 2nd European Conference on Electrochemical Processing. Innovation and Progress, Moat House International, Glasgow, 21-23 Apr. (1993).

  27. K. Kohlbrecka and J. Przyluski, Electrochim. Acta 39(11/12) (1994) 1591.

    Google Scholar 

  28. R. L. Clarke and R. Pardoe, ‘Application of Ebonex® Conductive Ceramic Electrodes in Effluent Treatment in Electrochemistry for a Cleaner Environment’ (edited by J. D. Genders and N. L. Weinberg), The Electrosynthesis Company, New York (1992).

    Google Scholar 

  29. A. M. Couper, D. Pletcher and F. C. Walsh, Chem. Rev. 90 (1990) 837.

    Google Scholar 

  30. P. C. S. Hayfield, US Patent 4 422 917 (1983).

  31. S. M. Jasem and A. C. C. Tseung, J. Electrochem. Soc. 126(8) (1979) 1353.

    Google Scholar 

  32. J. D. C. Haenen, W. Vischer and E. Barendrecht, J. Appl. Electrochem. 15 (1985) 29.

    Google Scholar 

  33. B. E. Conway and T. C. Liu, Phys. Chem. 91 (1987) 4610.

    Google Scholar 

  34. J. E. Graves, D. Pletcher, R. L. Clarke and F. C. Walsh, J. Appl. Electrochem. 22(3) (1992) 200.

    Google Scholar 

  35. Atraverda Ltd., Sheffield (see [18]), company literature (1996).

  36. C. J. Brown, D. Pletcher, F. C. Walsh, J. K. Hammond and D. Robinson, J. Appl. Electrochem. 24 (1994) 95.

    Google Scholar 

  37. P. Trinidad and F. C. Walsh, Electrochim. Acta 41(4) (1996) 493.

    Google Scholar 

  38. F. C. Walsh, unpublished work.

  39. J. R. Smith, A. H. Nahléand F. C. Walsh, J. Appl. Electrochem. 27(7) (1997) 815.

    Google Scholar 

  40. BS. EN. 623-2, ‘Advanced Technical Ceramics-Monolithic Ceramics-General and Textural Properties. Part 2: Determination of density and porosity,’ CEN European Committee for Standardization, Brussels, Sept. (1993).

  41. K. Ellis, Atraverda Ltd., personal communication.

  42. Electrochemical Design Associates (EDA), ‘Recent Developments in Ebonex® Electrodes: Cable Electrodes’, company literature, EDA Technology, 829 Heinz street, Berkeley, CA 94710, USA (1996).

    Google Scholar 

  43. P. C. S. Hayfield and R. L. Clarke, in Proceedings of the Electrochemical Society Meeting, Los Angels, 7-12 May (1989).

  44. L. He, H. F. Franzen, J. E. Vitt and D. C. Johnson, Electrochem. Soc. 141(4) (1994) 1014.

    Google Scholar 

  45. S.-Y. Park, S.-I. Mho, E. O. Chi, Y. U. Kwon and H. L. Park, Thin Solid Films 258 (1995) 5.

    Google Scholar 

  46. M. Mayr, W. Blatt, B. Busse and H. Heinke, 4th International Forum on Electrolysis in the Chemical Industry, Fort Lauderdale, FA, Nov. (1990).

  47. CSIRO Report DMR-098, ‘Evaluation of the Effect of Ebonex® Additive on Lead-acid Battery Capacity at Different Discharge Rates’, Aug. (1995).

  48. W. J. Macklin and R. J. Neat, Solid State Ionics 53-56 (1992) 694.

    Google Scholar 

  49. K. Kordesch, J. Gsellmann and T. Klaus, World Patent PCT Int. Appl. WO 90 02 423 (1990).

  50. J. E. Mieczkowska and S. P. Markfort, US Patent 5 342 712 (1994).

  51. S. Timothy, ‘Contaminated Land: Markets and Technology Issues’, Centre for Exploitation of Science and Technology, 5 Bemers Road, Islington, London (1992).

    Google Scholar 

  52. Department of Trade and Industry, Overseas Trade Services, ‘Soil Contamination Cleaning up in the Netherlands’, Earls Court, London, 15 Oct. (1992).

    Google Scholar 

  53. M. R. G. Taylor and R. A. N. McLean, ‘Overview of Cleaning-up Methods for Contaminated Sites’, London Waste Authority (1992).

  54. R. Lageman, ‘Electro-reclamation’, Chem. Ind., 18 Sept. (1989) 585.

  55. Department of the Environment, Contract PEPCD 7/7/138, Jan. (1991).

  56. J. O’M. Bockris, ‘Environmental Applications of Electrochemical Technology’, 6th International Forum on Electrolysis in the Chemical Process Industries, Nov. (1993).

  57. C. L. K. Tennakoon, R. C. Bhardwaj and J. O'M. Bockris, J. Appl. Electrochem. 26 (1996) 18.

    Google Scholar 

  58. R. L. Clarke and R. Pardoe, 4th International Forum on Electrolysis in the Chemical Industry, Fort Lauderdale, FA, Nov. (1990).

  59. D. Brackenbury, R. L. Clarke, J. Vinson and F. C. Walsh, ‘Recent Developments in Ebonex® Electrodes’, 5th International Forum on Electrolysis in the Chemical Industry, FA, Nov. (1996).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, J.R., Walsh, F.C. & Clarke, R.L. Electrodes based on Magnéli phase titanium oxides: the properties and applications of Ebonex® materials. Journal of Applied Electrochemistry 28, 1021–1033 (1998). https://doi.org/10.1023/A:1003469427858

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003469427858

Navigation