Skip to main content
Log in

Transcriptional control of expression of fungal ß-lactam biosynthesis genes

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The most commonly used ß-lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporin. Penicillin is produced as end product by some fungi, most notably by Aspergillus ( Emericella) nidulans and Penicillium chrysogenum. Cephalosporins are synthesised by several bacteria and fungi, e.g. by the fungus Acremonium chrysogenum (syn. Cephalosporium acremonium). The biosynthetic pathways leading to both secondary metabolites start from the same three amino acid precursors and have the first two enzymatic reactions in common. The penicillin biosynthesis is catalysed by three enzymes encoded by acvA ( pcbAB), ipnA (pcbC) and aatA ( penDE). The genes are organised into a cluster. In A. chrysogenum, in addition to acvA and ipnA, which are also clustered, a second cluster contains the genes for enzymes catalysing the reactions of the later steps of the cephalosporin pathway (cefEF, cefG). Transcription of biosynthesis genes is subject to sophisticated control by nutritional factors (e.g. glucose, nitrogen), amino acids such as lysine and methionine, and ambient pH. Some regulators have been identified such as the A. nidulans pH regulatory protein PACC and the transcriptional complex PENR1. PENR1 is a HAP-like transcriptional complex similar or identical to AnCF. Additional positive regulatory factors seem to be represented by recessive trans-acting mutations of A. nidulans ( prgA1, prgB1, npeE1) and P. chrysogenum (carried by mutants Npe2 and Npe3). The GATA-binding factor NRE appears to be involved in the regulation of the penicillin biosynthesis genes by the nitrogen source in P. chrysogenum. Formal genetic evidence suggests the existence of transcriptional repressors as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arst HN Jr (1996) Regulation of gene expression by pH, p. 235–240. In: Brambl R & Marzluf GA (Eds) The Mycota III, Biochemistry and Molecular Biology. Springer Verlag, Berlin, Germany

    Google Scholar 

  • Arst HN Jr, Bignell E & Tilburn J (1994) Two new genes involved in signalling ambient pH in Aspergillus nidulans. Mol. Gen. Genet. 245: 787–790

    Google Scholar 

  • Barredo JL, Diez B, Alvarez E & Martin JF (1989) Large amplification of a 35-kb DNA fragment carrying two penicillin biosynthetic genes in high penicillin producing strains of Penicillium chrysogenum. Curr. Genet. 16: 453–459

    Google Scholar 

  • Brakhage AA (1998) Molecular regulation of ß-lactam biosynthesis in filamentous fungi. Microbiol. Mol. Biol. Rev. 62: 547–585

    Google Scholar 

  • Brakhage AA, Browne P & Turner G (1992) Regulation of Aspergillus nidulans penicillin biosynthesis and penicillin biosynthesis genes acvA and ipnA by glucose. J. Bacteriol. 174: 3789–3799

    Google Scholar 

  • Brakhage AA, Browne P & Turner G (1994) Analysis of penicillin biosynthesis and the expression of penicillin biosynthesis genes of Aspergillus nidulans by targeted disruption of the acvA gene. Mol. Gen. Genet. 242: 57–64

    Google Scholar 

  • Brakhage AA & Turner G (1992) L-Lysine repression of penicillin biosynthesis and expression of penicillin biosynthesis genes acvA and ipnA in Aspergillus nidulans. FEMS Microbiol. Lett. 98: 123–128

    Google Scholar 

  • Brakhage AA & Turner G (1995) Biotechnical Genetics of Antibiotic Biosynthesis, pp. 263–285. In: Kück U (Ed) The Mycota II. Genetics and Biotechnology. Springer Verlag, Berlin, Germany

    Google Scholar 

  • Brakhage AA & Van den Brulle J (1995) Use of reporter genes to identify recessive trans-acting mutations specifically involved in the regulation of Aspergillus nidulans penicillin biosynthesis genes. J. Bacteriol. 177: 2781–2788

    Google Scholar 

  • Caddick MX, Brownlee AG & Arst HN Jr (1986) Regulation of gene expression by pH of the growth medium in Aspergillus nidulans. Mol. Gen. Genet. 203: 346–353

    Google Scholar 

  • Cantoral JM, Gutiérrez S, Fierro F, Gil-Espinosa S, van Liempt H & Martin JF (1993) Biochemical characterisation and molecular genetics of nine mutants of Penicillium chrysogenum impaired in penicillin biosynthesis. J. Biol. Chem. 268: 737–744

    Google Scholar 

  • Demain AL (1957) Inhibition of penicillin formation by lysine. Arch. Biochem. Biophys. 67: 244–245

    Google Scholar 

  • DeModena JA, Gutiérrez S, Velasco J, Fernández FJ, Fachini RA, Galazzo JL, Hughes DE & Martin JF (1993) The production of cephalosporin C by Acremonium chrysogenum is improved by the intracellular expression of a bacterial hemoglobin. Bio/Technol. 11: 926–929

    Google Scholar 

  • Diez BS, Gutiérrez S, Barredo JL, van Solingen P, van der Voort LHM & Martin JF (1990) The cluster of penicillin biosynthetic genes. Identification and characterization of the pcbAB gene encoding the α-aminoadipyl-cysteinyl-valine synthetase and linkage to the pcbC and penDE genes. J. Biol. Chem. 265: 16358–16365

    Google Scholar 

  • Dorn G (1965) Genetic analysis of the phosphatases in Aspergillus nidulans. Genet. Res. 6: 13–26

    Google Scholar 

  • Espeso EA & Peñalva MA (1992) Carbon catabolite repression can account for temporal pattern of expression of a penicillin biosynthetic gene in Aspergillus nidulans. Mol. Microbiol. 6: 1457–1465

    Google Scholar 

  • Espeso EA & Peñalva MA (1996) Three binding sites for the Aspergillus nidulans PacC zinc-finger transcription factor are necessary and sufficient for regulation by ambient pH of the isopenicillin N synthase gene promoter. J. Biol. Chem. 271: 28825–28830

    Google Scholar 

  • Espeso EA, Tilburn J, Arst HN Jr & Peñalva MA (1993) pH regulation is a major determinant in expression of a fungal biosynthetic gene. EMBO J. 12: 3947–3956

    Google Scholar 

  • Espeso EA, Tilburn J, Sánchez-Pulido L, Brown CV, Valencia A, Arst HN Jr & Peñalva MA (1997) Specific DNA recognition by the Aspergillus nidulans three zinc finger transcription factor PacC. J. Mol. Biol. 274: 466–480

    Google Scholar 

  • Feng B, Friedlin E & Marzluf GA (1994) A reporter gene analysis of penicillin biosynthesis gene expression in Penicillium chrysogenum and its regulation by nitrogen and glucose catabolite repression. Appl. Environm. Microbiol. 60: 4432–4439

    Google Scholar 

  • Fernández-Cañón JM & Peñalva MA (1995) Overexpression of two penicillin structural genes in Aspergillus nidulans. Mol. Gen. Genet. 246: 110–118

    Google Scholar 

  • Haas H, Bauer B, Redl B, Stöffler G & Marzluf GA (1995) Molecular cloning and analysis of nre, the major nitrogen regulatory gene of Penicillium chrysogenum. Curr. Genet. 27: 150–158

    Google Scholar 

  • Haas H & Marzluf GA (1995) NRE, the major nitrogen regulatory protein of Penicillium chrysogenum binds specifically to elements in the intergenic promoter regions of nitrate assimilation and penicillin biosynthetic gene clusters. Curr. Genet. 28: 177–183

    Google Scholar 

  • Hoskins JA, O'Callaghan N, Queener SW, Cantwell CA, Wood JS, Chen VJ & Skatrud PL (1990) Gene disruption of the pcbAB gene encoding ACV synthetase in Cephalosporium acremonium. Curr. Genet. 18: 523–530

    Google Scholar 

  • Kennedy J & Turner G (1996) δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine synthetase is a rate limiting enzyme for penicillin production in Aspergillus nidulans. Mol. Gen. Genet. 253: 189–197

    Google Scholar 

  • Kück U, Walz M, Mohr G & Mracek M (1989) The 5′-sequence of the isopenicillin N-synthetase gene (pcbC) from Cephalosporium acremonium directs the expression of the prokaryotic hygromycin B phosphotransferase gene (hph) in Aspergillus niger. Appl. Microbiol. Biotechnol. 31: 358–365

    Google Scholar 

  • Litzka O, Papagiannopoulos P, Davis MA, Hynes MJ & Brakhage AA (1998) The penicillin regulator PENR1 of Aspergillus nidulans is a HAP-like transcriptional complex. Eur. J. Biochem. 251: 758–767

    Google Scholar 

  • Litzka O, Then Bergh K & Brakhage AA (1995) Analysis of the regulation of Aspergillus nidulans penicillin biosynthesis gene aat (penDE) encoding acyl coenzyme A:6-aminopenicillanic acid acyltransferase. Mol. Gen. Genet. 249: 557–569

    Google Scholar 

  • Litzka O, Then Bergh K & Brakhage AA (1996) The Aspergillus nidulans penicillin biosynthesis gene aat (penDE) is controlled by a CCAAT containing DNA element. Eur. J. Biochem. 238: 675–682

    Google Scholar 

  • MacCabe AP, van Liempt H, Palissa H, Unkles SE, Riach MBR, Pfeifer E, von Döhren H & Kinghorn JR (1991) δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine synthetase from Aspergillus nidulans — Molecular characterization of the acvA gene encoding the first enzyme of the penicillin biosynthetic pathway. J. Biol. Chem. 266: 12646–12654.

    Google Scholar 

  • Martin JF, Gutiérrez S & Demain AL (1997) ß-Lactams, p. 91–127. In: Anke T (Ed) Fungal Biotechnology. Antibiotics. Chapman and Hall, Weinheim

    Google Scholar 

  • Marzluf GA (1997) Genetic regulation of nitrogen metabolism in the fungi. Microbiol. Mol. Biol. Rev. 61: 17–32

    Google Scholar 

  • Mathison L, Soliday C, Stepan T, Aldrich T & Rambosek J (1993) Cloning, characterization, and use in strain improvement of the Cephalosporium acremonium gene cefG encoding acetyl transferase. Curr. Genet. 23: 33–41

    Google Scholar 

  • Matsuda A, Sugiura H, Matsuyama K, Matsumoto H, Ichikawa S & Komatsu K-I (1992) Cloning and disruption of the cefG gene encoding acetyl coenzyme A: deacetylcephalosporin C O-acetyltransferase from Acremonium chrysogenum. Biochem. Biophys. Res. Commun. 186: 40–46

    Google Scholar 

  • McNabb DS, Xing Y & Guarente L (1995) Cloning of yeast HAP5: a novel subunit of a heterotrimeric complex required for CCAAT binding. Genes Dev. 9: 47–58

    Google Scholar 

  • Menne S, Walz M & Kück U (1994) Expression studies with the bidirectional pcbAB-pcbC promoter region from Acremonium chrysogenum using reporter gene fusions. Appl. Microbiol. Biotechnol. 42: 57–66

    Google Scholar 

  • Newbert RW, Barton B, Greaves P, Harper J & Turner G (1997) Analysis of a commercially improved Penicillium chrysogenum strain series: Involvement of recombinogenic regions in amplification and deletion of the penicillin biosynthesis gene cluster. J. Ind. Microbiol. Biotechnol. 19: 18–27

    Google Scholar 

  • Orejas M, Espeso EA, Tilburn J, Sarkar S, Arst HN Jr & Peñalva MA (1995) Activation of the Aspergillus PacC transcription factor in response to alkaline ambient pH requires proteolysis of the carboxy-terminal moiety. Genes Devel. 9: 1622–1632

    Google Scholar 

  • Papagiannopoulos P, Andrianopoulos A, Sharp JA, Davis MA & Hynes MJ (1996) The hapC gene of Aspergillus nidulans is involved in the expression of CCAAT-containing promoters. Mol. Gen. Genet. 251:412–421

    Google Scholar 

  • Pérez-Esteban B, Gómez-Pardo E & Peñalva MA (1995) A lacZ reporter fusion method for the genetic analysis of regulatory mutations in pathways of fungal secondary metabolism and its application to the Aspergillus nidulans penicillin pathway. J. Bacteriol. 177: 6069–6076

    Google Scholar 

  • Pérez-Esteban B, Orejas M, Gómez-Pardo E & Peñalva MA (1993) Molecular characterization of a fungal secondary metabolism promoter: transcription of the Aspergillus nidulans isopenicillin N synthetase gene is modulated by upstream negative elements. Mol. Microbiol. 9: 881–895

    Google Scholar 

  • Ramos FR, López-Nieto MJ & Martin JF (1986) Coordinate increase of isopenicillin N synthetase, isopenicillin N epimerase and deacetoxycephalosporin C synthetase in a high cephalosporin-producing mutant of Acremonium chrysogenum and simultaneous loss of the three enzymes in a non-producing mutant. FEMS Microbiol. Lett. 35: 123–127

    Google Scholar 

  • Ramsden M, McQuade BA, Saunders K, Turner MK & Harford S (1989) Characterization of a loss-of-function mutation in the isopenicillin N synthetase gene of Acremonium chrysogenum. Gene 85: 267–273

    Google Scholar 

  • Renno DV, Saunders G, Bull AT & Holt G (1992) Transcript analysis of penicillin genes from Penicillium chrysogenum. Curr. Genet. 21: 49–54

    Google Scholar 

  • Shah AJ, Tilburn J, Adlard MW & Arst HN Jr (1991) pH regulation of penicillin production in Aspergillus nidulans. FEMS Microbiol. Lett. 77: 209–212

    Google Scholar 

  • Skatrud PL, Tietz AJ, Ingolia TD, Cantwell CA, Fisher DL, Chapman JL & Queener SW (1989) Use of recombinant DNA to improve production of cephalosporin C by Cephalosporium acremonium. Bio/Technol. 7: 477–485

    Google Scholar 

  • Smith DJ, Bull JH, Edwards J & Turner G (1989) Amplification of the isopenicillin N synthetase gene in a strain of Penicillium chrysogenum producing high levels of penicillin. Mol. Gen. Genet. 216: 492–497

    Google Scholar 

  • Smith DJ, Burnham MRK, Bull JH, Hodgson JE, Ward JM, Browne P, Brown J, Barton B, Earl AJ & Turner G (1990a) ß-Lactam antibiotic biosynthetic genes have been conserved in clusters in prokaryotes and eukaryotes. EMBO J. 9: 741–747

    Google Scholar 

  • Smith DJ, Earl AJ & Turner G (1990b) The multifunctional peptide synthetase performing the first step of penicillin biosynthesis is a 421 073 dalton protein similar to Bacillus brevis peptide antibiotic synthetases. EMBO J. 9: 2743–2750

    Google Scholar 

  • Suárez T & Peñalva MA (1996) Characterisation of a Penicillium chrysogenum gene encoding a PacC transcription factor and its binding sites in the divergent pcbAB-pcbC promoter of the penicillin biosynthetic cluster. Mol. Microbiol. 20: 529–540

    Google Scholar 

  • Then Bergh K & Brakhage AA (1998) Regulation of the Aspergillus nidulans penicillin biosynthesis gene acvA (pcbAB) by amino acids: Implication for involvement of transcription factor PACC. Appl. Environm. Microbiol. 64: 843–849

    Google Scholar 

  • Then Bergh K, Litzka O & Brakhage AA (1996) Identification of a major cr's-acting DNA element controlling the bidirectionally transcribed penicillin biosynthesis genes acvA (pcbAB) and ipnA (pcbC) of Aspergillus nidulans. J. Bacteriol. 178: 3908–3916

    Google Scholar 

  • Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M, Mungroo J, Peñalva MA & Arst HN Jr (1995) The Aspergillus PacC zinc finger transcription factor mediates regulation of both acidic-and alkaline-expressed genes by ambient pH. EMBO J. 14: 779–790

    Google Scholar 

  • Veenstra AE, van Solingen P, Bovenberg RAL & van der Voort LHM (1991) Strain improvement of Penicillium chrysogenum by recombinant DNA techniques. J. Biotechnol. 17: 81–90

    Google Scholar 

  • Velasco J, Gutiérrez S, Fernandez FJ, Marcos AT, Arenos C & Martin JF (1994) Exogenous methionine increases levels of mRNAs transcribed from pcbAB, pcbC, and cefEF genes, encoding enzymes of the cephalosporin biosynthetic pathway, in Acremonium chrysogenum. J. Bacteriol. 176: 985–991

    Google Scholar 

  • Zhang J & Demain AL (1992) Regulation of ACV synthetase activity by carbon sources and their metabolites. Arch. Microbiol. 158: 364–369

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel A. Brakhage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litzka, O., Bergh, K.T., den Brulle, J.V. et al. Transcriptional control of expression of fungal ß-lactam biosynthesis genes. Antonie Van Leeuwenhoek 75, 95–105 (1999). https://doi.org/10.1023/A:1001706729545

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001706729545

Navigation