Skip to main content
Log in

Thermal Diffusivity Measurements by Photothermal and Thermographic Techniques

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this work, resulting from a collaboration between two laboratories, an analysis of different techniques to measure thermal diffusivity is presented. First, a brief description of the laser flash method, thermal wave interferometry photothermal techniques, and four different thermographic techniques in terms of experimental setups and in data processing algorithms is given. After that, results obtained on samples cut from the same block of stainless steel AISI 304 are reported. Uncertainty evaluations of the measurements are reported together with a discussion on the pros and cons of the related techniques. The agreement between the results obtained by applying the six techniques appears satisfactory from a practical point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. P. Swaminathan and N. S. Cheruvu, “Gas Turbine Hot-Section Materials and Coatings in Electric Utility Applications”, in Advanced Materials and Coatings for Combustion Turbines, V. P. Swaminathan and N. S. Cheruvu, eds. (ASM Internationa, 1994).

  2. European Brite-Euram Project BRPR-CT97-0425 EFCC/UHTHE/B3.

  3. European Brite-Euram Project BRPR-CT97-0426 EFCC/UHTHE/B4.

  4. G. Penco, D. Barni, P. Michelato, and C. Pagani, Proc. of Particle Accelerator Conf. 2001 (Chicago, Illinois, 2001), pp. 1231-1240.

  5. A. Donato, A. Ortona, C. A. Nannetti, and S. Casadio, “SiC/SiC Fibre Ceramic Composite for Fusion Application: A New Manufacturing Process', ” Proc. 19th Symp. Fusion Technology (SOFT) (Lisbon, 1996).

  6. TWI Bulletin, Reprint 508/6/96 (Nov/Dec. 1996).

  7. A. Donati, A. Lanciani, P. Morabito, P. Rossi, F. Barberis, R. Berti, A. Capelli, and P. G. Sona, High Temp. High Press. 19:371(1987).

    Google Scholar 

  8. T. Molibog, R. B. Dinwiddle, W. D. Porter, H. Wang, and H. E. Littleton, American Foundrymen's Trans. No. 00-167 (2000), pp. 471-478.

  9. R. E. Taylor and K. D. Maglic, Compendium of Thermophysical Property Measurement Methods, Vol. 1: Survey of Measurement Techniques, K. D. Maglic, A. Cezairliyan, and V. E. Peletsky, eds. (Plenum Press, New York, 1984), pp. 299-333.

    Google Scholar 

  10. R. E. Taylor and K. D. Maglic, Compendium of Thermophysical Property Measurement Methods, Vol. 2: Recommended Measurement Techniques and Practices, K. D. Maglic, A. Cezairliyan, and V. E. Peletsky, eds. (Plenum Press, New York, 1992), pp. 281-314.

    Google Scholar 

  11. A. Mandelis, Progress in Photothermal and Photoacoustic Science and Technology (Elsevier, New York, 1991), Vol.1, pp. 207-284.

    Google Scholar 

  12. D. P. Almond and P. M. Patel, Photothermal Science and Techniques (Chapman & Hall, London, 1996), pp. 199-220.

    Google Scholar 

  13. W. P. Parker, R. J. Jenkins, C. P. Butter, G. L. Gutter, and G. L. Abbott, J. Appl. Phys. 32:1679(1961).

    Google Scholar 

  14. ASTM C714-72, Standard Test Method for Thermal Diffusivity of Carbon and Graphite by a Thermal Pulse Method (ASTM, 1972).

  15. BS7134: Section 4.2 (1990); Method for the Determination of Thermal Diffusivity by the Laser Flash (or Heat Pulse) Method (British Standards Institution 1990).

  16. JIS R 1611: Testing Methods of Thermal Diffusivity, Specific Heat Capacity and Thermal Conductivity for High Performance Ceramics by Laser Flash Method (Japanese Standards Association, 1991).

  17. P. M. Patel and D. P. Almond, J. Mater. Sci. 20:955(1985).

    Google Scholar 

  18. H. P. R. Frederikse, X. T. Ying, and A. Feldman, Mater. Res. Soc. Symp. Proc. 142:289(1989).

    Google Scholar 

  19. L. Fabbri, F. Cernuschi, P. Fenici, S. Ghia, and G. M. Piana, in Proc. of Mater. Adv. Power Eng., Liège, Belgium, D. Coutsouradis, J. H. Davidson, J. Ewald, P. Greenfield, T. Khan, M. Malik, D. B. Meadowcroft, V. Regis, R. B. Scarlin, F. Schubert, and D. V. Thornton, eds. (Kluwer, Dordrecht, 1994), Part II, pp. 1377-1384.

    Google Scholar 

  20. F. Cernuschi, A. Figari, and L. Fabbri, J. Mater. Sci. 35:5891(2000).

    Google Scholar 

  21. C. Wang and A. Mandelis, J. Appl. Phys. 85:8366(1999).

    Google Scholar 

  22. A. C. Bento, D. P. Almond, S. R. Brown, and I. G. Turner, J. Appl. Phys. 79:6848(1996).

    Google Scholar 

  23. G. Rousset and F. Lepoutre, Rev. Phys. Appl. 17:201(1982).

    Google Scholar 

  24. P. K. Kuo, M. J. Lin, C. B. Reyes, L. D. Favro, R. L. Thomas, D. S. Kim, S. Y. Zhang, L. J. Inglehart, D. Fournier, A. C. Boccara, and N. Yacoubi, Can. J. Phys. 64:1165(1986).

    Google Scholar 

  25. P. K. Kuo, E. D. Sendler, L. F. Favro, and R. L. Thomas, Can. J. Phys. 64:1168(1986).

    Google Scholar 

  26. A. Figari, Meas. Sci. Technol. 2:653(1991).

    Google Scholar 

  27. A. Figari, J. Appl. Phys. 71:3138(1992).

    Google Scholar 

  28. A. Salazar, A. Sanchez-Lavega, and J. Fernandez, J. Appl. Phys. 1:1216(1991).

    Google Scholar 

  29. L. Fabbri and P. Fenici, Rev. Sci. Instrum. 66:3593(1995).

    Google Scholar 

  30. L. Pottier and K. Plamman, J. Phys. IV C7:295(1994).

    Google Scholar 

  31. J. C. Krapez, in Proc. 5th Workshop on Advanced Infrared Technology and Applications (Venice, Italy, 1999), pp. 289-296.

  32. I. Philippi, J. C. Batsale, D. Maillet, and A. Degiovanni, Rev. Sci. Instrum. 66:182(1995).

    Google Scholar 

  33. Zhoung Ouyang, L. D. Favro, and R. L. Thomas, in AIP Conf. Proc. No. 463 Photoacoustic and Photothermal Phenomena, Rome, F. Scudieri and M. Bertolotti, eds. (AIP Woodbury, New York, 1999), pp. 374-376.

    Google Scholar 

  34. C. S. Welch, D. M. Health, and W. P. Winfree, J. Appl. Phys. 61:895(1987).

    Google Scholar 

  35. F. Cernuschi, L. Fabbri, and M. Lamperti, in Conf. Proc. No. 463 Photoacoustic and Photothermal Phenomena, Rome, F. Scudieri and M. Bertolotti, eds. (AIP Woodbury, New York, 1999), pp. 392-394.

    Google Scholar 

  36. D. He, Y. Gu, M. Zheng, and D. Zhu, Proc. 9th Int. Topical Meeting on Photoacoustic and Photothermal Phenomena, Y. Zhang, ed. (Progress in Natural Science, Nanjing, China, 1996), pp. 169-175.

    Google Scholar 

  37. T. Yamane, S. Katayama, and M. Todoki, Rev. Sci. Instrum. 67:4261(1996).

    Google Scholar 

  38. F. Cernuschi, A. Russo, L. Lorenzoni, and A. Figari, Rev. Sci. Instrum. 72:3988(2001).

    Google Scholar 

  39. P. G. Bison, S. Marinetti, A. Mazzoldi, E. Grinzato, and C. Bressan, Infrared Phys. Technol. 43:127(2002).

    Google Scholar 

  40. F. Cernuschi and L. Lorenzoni, CESI Report No. A1/033124 (2001).

  41. A. Ångström, Philos. Mag. 25:130(1863).

    Google Scholar 

  42. A. Ångström, Ann. Phys. (Leipzig) 114:513(1861).

    Google Scholar 

  43. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford University Press, London, 1959), pp. 136-139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Cernuschi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cernuschi, F., Bison, P.G., Figari, A. et al. Thermal Diffusivity Measurements by Photothermal and Thermographic Techniques. International Journal of Thermophysics 25, 439–457 (2004). https://doi.org/10.1023/B:IJOT.0000028480.27206.cb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJOT.0000028480.27206.cb

Navigation