Skip to main content
Log in

Effect of sequence length, sequence frequency, and data acquisition rate on the performance of a Hadamard transform time-of-flight mass spectrometer

  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

Various factors influencing the performance of a Hadamard transform time-of-flight mass spectrometer (HT-TOFMS) have been investigated. Using a nitrogen corona discharge to produce an ion stream of N +2 , N +3 , and N +4 , it is found for spectra containing only N +4 that the signal-to-noise ratio (SNR) closely approaches the value calculated from the ion background by assuming that the ion background follows a Poisson distribution. In contrast, for a more intense beam containing N +2 , N +3 , and N +4 , the SNR is less than its theoretical value because of the appearance of discrete spikes in the mass spectrum caused by deviations in the actual modulation sequence from the ideal one. These spikes can be reduced, however, by decreasing the modulation voltage. Under these optimized conditions, the pseudo-random sequence length is varied to understand how it alters SNR, mass resolution, and scan speed. When the length of the pseudo-random sequence is doubled, the SNR increases by √2 while the time necessary to record a mass spectrum also doubles. Mass resolution can be varied between 500 and 1200 at m/z = 609 as the sequence length, modulation speed (10 MHz, 25 MHz), and acquisition rate (up to 50 MHz) are changed. Scan speeds of 6000 passes per s can be obtained using a sequence containing 4095 elements modulated at 25 MHz. The capability to tailor the HT-TOFMS to increase the scan speed and resolution with a constant 50% duty cycle makes the technique extremely appealing as a mass analyzer for measuring rapid changes in the composition of an ion stream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cotter, R. J. Time-of-flight Mass Spectrometry, Washington, DC: ACS Symposium Series No. 549, 1994.

  2. Karas, M.; Bachmann, D.; Hillenkamp, F. Anal. Chem. 1985, 57, 2935–2939.

    Article  CAS  Google Scholar 

  3. Zenobi, R.; Knochenmuss, R. Mass Spectrom. Rev. 1999, 17, 337–366.

    Article  Google Scholar 

  4. Chien, B. M.; Michael, S. M.; Lubman, D. Int. J. Mass Spectrom. 1994, 131, 149–179.

    Article  CAS  Google Scholar 

  5. Guilhaus, M.; Selby, D.; Mlynski, V. Mass Spectrom. Rev. 2000, 19, 65–107.

    Article  CAS  Google Scholar 

  6. Brock, A.; Rodriguez, N.; Zare, R. N. Anal. Chem. 1998, 70, 3735–3741.

    Article  CAS  Google Scholar 

  7. Brock, A.; Rodriguez, N.; Zare, R. N. Rev. Sci. Instrum. 2000, 71, 1306–1318.

    Article  CAS  Google Scholar 

  8. Harwit, M. D.; Sloane, N. J. Hadamard Transform Optics. Academic Press: London, 1979, pp 214–216.

    Google Scholar 

  9. Marshall, A. G. Fourier, Hadamard, and Hilbert Transforms in Chemistry. Plenum Press: New York, 1982, pp 45–67.

    Google Scholar 

  10. Treado, P. J.; Morris, M. D. Spectrochim. Acta Rev. 1990, 13, 355–375.

    CAS  Google Scholar 

  11. Treado, P. J.; Morris, M. D. Anal. Chem. 1989, 61, 723A-734A.

    Article  CAS  Google Scholar 

  12. Barnidge, D. R.; Nilsson, S.; Markides, K. E.; Rapp, H.; Hjort, K. Rapid Comm. Mass Spectrom. 1999, 13, 994–1002.

    Article  CAS  Google Scholar 

  13. Ervin, K. M.; Armentrout, P. B. J. Chem. Phys. 1985, 83, 166–189.

    Article  CAS  Google Scholar 

  14. Krutchinsky, A. N.; Chernushevich, I. V.; Spicer, V. L.; Ens, W.; Standing, K. G. J. Am. Soc. Mass Spectrom. 1998, 9, 569–579.

    Article  CAS  Google Scholar 

  15. Vlasak, P. R.; Beussman, D. J.; Davenport, M. R.; Enke, C. G. Rev. Sci. Instrum. 1996, 67, 68–72.

    Article  CAS  Google Scholar 

  16. Montgomery, D. C. Design and Analysis of Experiments; 4th ed. Wiley: New York, 2001, pp 466–472.

    Google Scholar 

  17. Wilhelmi, G.; Gompf, F. Nucl. Instr. Meth. 1970, 81, 36–44.

    Article  Google Scholar 

  18. Rodriguez, N. Ph.D. Dissertation, Department of Chemistry. Stanford University, 1999.

  19. Hanley, Q. S. Appl. Spectrosc. 2001, 55, 318–330.

    Article  CAS  Google Scholar 

  20. Koleske, D. D.; Sibener, S. J. Rev. Sci. Instrum. 1992, 63, 3852–3855.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard N. Zare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, F.M., Vadillo, J.M., Engelke, F. et al. Effect of sequence length, sequence frequency, and data acquisition rate on the performance of a Hadamard transform time-of-flight mass spectrometer. J Am Soc Mass Spectrom 12, 1302–1311 (2001). https://doi.org/10.1016/S1044-0305(01)00322-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(01)00322-1

Keywords

Navigation