Skip to main content
Log in

A thermodynamic model on predicting density of medium-Mn steels with experimental verification

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

A new model on predicting the density of hot-rolled multi-phased medium-Mn steel has been presented on the basis of thermodynamic calculations. This is an integrated model, which includes one for calculating the retained austenite (RA) fraction and the other for volume expansion during the austenite-to-martensite transformation, because both of them are key parameters for calculating the density of steel at ambient temperature. The existing empirical equations for calculating Ms temperature and lattice constants of both martensite and austenite have been all reassessed by the XRD measurements on the microstructures of seven hot-rolled medium-Mn steels. Finally, the densities of seven steels were calculated merely from compositions and compared with the measured ones. The difference between them is no more than 1%, suggesting that the presented model should be of good value in designing the low-density steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Yamane, S. Furuhama, Int. J. Hydrogen Energy 23 (1998) 825–831.

    Article  Google Scholar 

  2. G. Frommeyer, E. J. Drewes, B. Engl, Metall. Res. Technol. 97 (2000) 1245–1253.

    Google Scholar 

  3. H. W. Luo, W. Q. Cao, X. J. Sun, H. Dong, Acta Mater. 59 (2011) 4002–4014.

    Article  Google Scholar 

  4. F. Yang, H. W. Luo, C. D. Hu, E. X. Pu, H. Dong, Mater. Sci. Eng. A. 685 (2017) 115–122.

    Article  Google Scholar 

  5. P. J. Gibbs, E. De Moor, M. J. Merwin, B. Clausen, J. G. Speer, D. K. Matlock, Metall. Mater. Trans. A 42 (2011) 3691–3702.

    Article  Google Scholar 

  6. S. S. Cheon, D. G. Lee, K. S. Jeong, Compos. Struct. 38 (1997) 229–239.

    Article  Google Scholar 

  7. A. Jambor, M. Beyer, Mater. Des. 18 (1997) 203–209.

    Article  Google Scholar 

  8. L. F. Zhang, R. B. Song, C. Zhao, F. Q. Yang, S. Qin, Y. Xu, Mater. Review 28 (2014) 111–118 (in Chinese).

    Google Scholar 

  9. G. Frommeyer, U. Brüx, Steel Res. Int. 77 (2006) 627–633.

    Article  Google Scholar 

  10. S. J. Park, B. Hwang, K. H. Lee, T. H. Lee, D. W. Suh, H. N. Han, Scripta Mater. 68 (2013) 365–369.

    Article  Google Scholar 

  11. R. Rana, C. Liu, R. K. Ray, Scripta Mater. 68 (2013) 354–359.

    Article  Google Scholar 

  12. I. Gutierrezurrutia, D. Raabe, Mater. Sci. Technol. 30 (2014) 1099–1104.

    Article  Google Scholar 

  13. H. L. Yi, JOM 66 (2014) 1759–1769.

    Article  Google Scholar 

  14. S. T. Huang, Solid X-ray Study, Higher Education Press, Beijing, 1985 (in Chinese).

    Google Scholar 

  15. D. P. Koistinen, R. E. Marburger, Acta Metall. 7 (1959) 59–60.

    Article  Google Scholar 

  16. S. Lee, B. C. De Cooman, Metall. Mater. Trans. A 44 (2013) 5018–5024.

    Article  Google Scholar 

  17. S. M. C. Van Bohemen, Mater. Sci. Technol. 28 (2012) 487–495.

    Article  Google Scholar 

  18. S. J. Lee, S. Lee, B. C. De Cooman, Int. J. Mater. Res. 104 (2013) 423–429.

    Article  Google Scholar 

  19. J. Emo, P. Maugis, A. Perlade, Comput. Mater. Sci. 125 (2016) 206–217.

    Article  Google Scholar 

  20. K. Sugimoto, H. Tanino, J. Kobayashi, Mater. Sci. Eng. A 688 (2017) 237–243.

    Article  Google Scholar 

  21. C. Capdevila, C. G. De Andrés, ISIJ Int. 42 (2002) 894–902.

    Article  Google Scholar 

  22. Y. Jiang, Z. D. Yin, J. C. Zhu, M. W. Li, Special Steel 24 (2003) No. 6, 9–12 (in Chinese).

    Google Scholar 

  23. S. C. Baik, S. Kim, Y. S. Jin, O. Kwon, ISIJ Int. 41 (2001) 290–297.

    Article  Google Scholar 

  24. S. J. Lee, S. Lee, B. C. De Cooman, Scripta Mater. 64 (2011) 649–652.

    Article  Google Scholar 

  25. S. J. Lee, Y. K. Lee, Scripta Mater. 52 (2005) 973–976.

    Article  Google Scholar 

  26. C. M. Li, F. Sommer, E. J. Mittemeijer, Mater. Sci. Eng. A 325 (2002) 307–319.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-wen Luo Ph.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Gh., Wen, Py. & Luo, Hw. A thermodynamic model on predicting density of medium-Mn steels with experimental verification. J. Iron Steel Res. Int. 24, 1078–1084 (2017). https://doi.org/10.1016/S1006-706X(17)30157-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(17)30157-7

Key words

Navigation