Skip to main content
Log in

Application of algae for enhanced plant growth and food productivity

  • Review
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Ensuring our survival primarily hinges on nourishment, as it provides the energy essential for various metabolic functions within our bodies. In the current scenario, adopting sustainable practices is imperative to satisfy our demand for both quantity and quality of food. This approach facilitates meeting our dietary needs and promotes an eco-friendly, pollution-free environment. The implementation of algae involves the utilization of biofertilizers, which augment the nutrient content of the soil, leading to elevated crop productivity. Algae can be used as biofertilizers, which are reservoirs for nutrients, and blue-green algae (BGA) can fix atmospheric nitrogen in specialized heterocyst cells and play a vital role in plant growth and stimulation. Microalgae used as biofertilizers include Acutodesmus dimorphus, Spirulina platensis, Chlorella vulgaris, Oscillatoria angustissima, Scenedesmus dimorphus, Anabaena azolla, and Nostoc sp. This can help to boost the plant growth, enhance soil fertility, and even help to improve the soil's physical and chemical properties, maintain the soil's temperature, and regulate aeration. The review focuses on an in-depth exploration of the implementation of algae as biofertilizers, specifically BGA, emphasizing their profound impact on soil ecosystems and sustainable agricultural practices. Ultimately, the review highlights and promotes the importance of various algae as a solution to raising environmental issues caused by excessive agricultural fertilizers and resulting agricultural pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Bambaradeniya CNB, Amerasinghe FP. Biodiversity associated with the rice field agroecosystem in asian countries: a brief review. Working Paper 63. Colombo, Sri Lanka: International Water Management Institute. 2003. https://doi.org/10.3910/2009.193.

  2. Daniel AI, Fadaka AO, Gokul A, Bakare OO, Aina O, Fisher S, Burt AF, Mavumengwana V, Keyster M, Klein A. Biofertilizer: the future of food security and food safety. Microorganisms. 2022;10:1220. https://doi.org/10.3390/microorganisms10061220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sahoo RK, Bhardwaj D, Tuteja N. Biofertilizers: a sustainable eco-friendly agricultural approach to crop improvement. In: Tuteja N, Singh Gill S, editors. Plant acclimation to environmental stress. New York: Springer; 2013. https://doi.org/10.1007/978-1-4614-5001-6_15.

  4. Galhano V, Laranjo GJ, Valiente EF, Videira R, Peixoto F. Impact of herbicides on non-target organisms in sustainable irrigated rice production systems: state of knowledge and future prospects. In: Kortekamp A, editor. Herbicides and environment. Croatia: Intech; 2011, p. 45–72.

  5. Ammar EE, Aioub AAA, Elesawy AE, Karkour AM, Mouhamed MS, Amer AA, El-Shershaby NA. Algae as Bio-fertilizers: between current situation and future prospective. Saudi J Biol Sci. 2022;29(5):3083–96. https://doi.org/10.1016/j.sjbs.2022.03.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oldeman, LR. Global extent of soil degradation. In: Bi-Annual Report 1991–1992/ISRIC, p. 19–36. https://edepot.wur.nl/299739.

  7. Abdel-Raouf N, Al-Homaidan AA, Ibraheem IB. Agricultural importance of algae. Afr J Biotechnolol. 2012;11(54):11648–58. https://doi.org/10.5897/AJB11.3983.

    Article  Google Scholar 

  8. Barone GD, Cernava T, Ullmann J, Liu J, Lio E, Germann AT, Nakielski A, Russo DA, Chavkin T, Knufmann K, Tripodi F, Coccetti P, Secundo F, Fu P, Pfleger B, Axmann IM, Lindblad P. Recent developments in the production and utilization of photosynthetic microorganisms for food applications. Heliyon. 2023;9(4): e14708. https://doi.org/10.1016/j.heliyon.2023.e14708.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ronga D, Biazzi E, Parati K, Carminati D, Carminati E, Tava A. Microalgal bio stimulants and biofertilizers in crop productions. Agronomy. 2019;9(4):192. https://doi.org/10.3390/agronomy9040192.

    Article  CAS  Google Scholar 

  10. Hussain F, Shah SZ, Ahmad H, Abubshait SA, Abubshait HA, Laref A, Manikandan A, Kusuma HS, Iqbal M. Microalgae an ecofriendly and sustainable wastewater treatment option: biomass application in biofuel and biofertilizer production. A review. Renew Sust Energ Rev. 2021;137: 110603. https://doi.org/10.1016/j.rser.2020.110603.

    Article  CAS  Google Scholar 

  11. Dineshkumar R, Kumaravel R, Gopalsamy J, Sikder MNA, Sampathkumar P. Microalgae as bio-fertilizers for rice growth and seed yield productivity. Waste Biomass Valori. 2018;9(5):793–800. https://doi.org/10.1007/s12649-017-9873-5.

    Article  CAS  Google Scholar 

  12. Mishra U, Pabbi S. Cyanobacteria: a potential biofertilizer for rice. Resonance. 2004;9:6–10. https://doi.org/10.1007/BF02839213.

    Article  Google Scholar 

  13. Song T, Martensson L, Eriksson T, Zheng W, Rasmussen U. Biodiversity and seasonal variation of the cyanobacterial assemblage in a rice paddy field in Fujian, China. FEMS Microbiol Ecol. 2005;54:131–40. https://doi.org/10.1016/j.femsec.2005.03.008.

    Article  CAS  PubMed  Google Scholar 

  14. Gonçalves AL. The use of microalgae and cyanobacteria in the improvement of agricultural practices: a review on their biofertilising, biostimulating and biopesticide roles. Appl Sci. 2021;11(2):871. https://doi.org/10.3390/app1102087.

    Article  Google Scholar 

  15. Shehata Sami M, Schmidhalter U, Valšíková M, Junge H. Effect of bio-stimulants on yield and quality of head lettuce grown under two sources of nitrogen. Gesunde Pflanzen. 2016;68(1):33–9. https://doi.org/10.1007/s10343-016-0357-5.

    Article  CAS  Google Scholar 

  16. Sahu D, Priyadarshani I, Rath B. Cyanobacteria as potential biofertilizer. CIBTech J Microbiol. 2012;1:20–6.

    Google Scholar 

  17. Roger PA, Reynaud PA. Free-living blue-green algae in tropical soils. In: Dommergues Y, Diem H, editors. Microbiology of tropical soil and plant productivity. La Hague: Martinus Nijhoff Publisher; 1982. https://doi.org/10.1007/978-94-009-7529-3_5.

  18. Rodríguez AA, Stella AM, Storni MM, Zulpa G, Zaccaro MC. Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Syst. 2006;2:1–4. https://doi.org/10.1186/1746-1448-2-7.

    Article  CAS  Google Scholar 

  19. Saadatnia H, Riahi H. Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants. Plant Soil Environ. 2009;55(5):207–12.

    Article  Google Scholar 

  20. Al-Sherif EA, Abd El-Hameed MS, Mahmoud MA, Ahmed HS. American–Eurasian. J Agric Environ Sci. 2015;15:794–9.

    Google Scholar 

  21. Wilson LT. Cyanobacteria: a potential nitrogen source in rice fields. Tex Rice. 2006;6:9–10.

    Google Scholar 

  22. Thajuddin N, Subramanian G. Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci. 2005;89:47–57. https://www.jstor.org/stable/24110431

  23. Malliga P, Uma L, Subramanian G. Lignolytic activity of the cyanobacterium Anabaena azollae ML2 and the value of coir waste as a carrier for biofertilizer. Microbios. 1996;86:175–83.

    CAS  Google Scholar 

  24. Pabbi S. Blue-green algae: a potential biofertilizer for rice. Algae world. 2015;449–465.

  25. Peter Nosko, Bliss LC, Cook FD. The association of free-living nitrogen-fixing bacteria with the roots of high arctic graminoids. Arc Antarc Alp Res 1994;26(2):180–186. https://doi.org/10.2307/1551782

  26. Baral SR, Mishra DK, Kumar HD. In situ nitrogen fixation rates in ten rice fields of Kathmandu valley, Nepal. In: Biofertilizers: potentialities and problems. Calcutta: Naya Prakash; 1988, p. 103–107.

  27. De PK. The role of blue-green algae in nitrogen fixation in rice fields. Proc R Soc Lond B: Biol Sci. 1939;127(846):121–39. https://doi.org/10.1098/rspb.1939.0014.

    Article  CAS  Google Scholar 

  28. Singh DT, Nirmala K, Modi DR, Katiyar S, Singh HN. Genetic transfer of herbicide resistance gene(s) from Gloeocapsa spp. to Nostoc muscorum. Mol Gen Genet. 1987;208:436–438. https://doi.org/10.1038/30484

  29. Chaurasia AK, Parasnis A, Apte SK. An integrative expression vector for strain improvement and environmental applications of the nitrogen fixing cyanobacterium, Anabaena sp. strain PCC7120. J Microbiol Methods. 2008;73:133–141. https://doi.org/10.1016/j.mimet.2008.01.013

  30. Arora J, Garcha HS, Pandher MS, Gupta RP. Blue green algae application in relation to nitrogen and grain yield of rice. Res Develop Report. 1986;3(2):72–6.

    Google Scholar 

  31. Bittencourt PP, Alves AF, Ferreira MB, da Silva Irineu LES, Pinto VB, Olivares FL. Mechanisms and applications of bacterial inoculants in plant drought stress tolerance. Microorganisms. 2023;11(2):502. https://doi.org/10.3390/microorganisms11020502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Subrahmanyan R, Relwani LL, Manna GB. Fertility build-up of rice field soils by blue-green algae. Proc Indian Acad Sci. 1965;62:252–72. https://doi.org/10.1007/BF03051570.

    Article  Google Scholar 

  33. Kurosawa E. Experimental studies on the nature of the substance secreted by the" bakanae" fungus. Nat Hist Soc Formosa. 1926;16:213–27.

    Google Scholar 

  34. Skoog F. Chemical regulation of growth and organ formation in plant tissue cultured in vitro. In Symp Soc Exp Biol. 1957;11:118–31.

    CAS  Google Scholar 

  35. Venkataraman GS. Nitrogen fixation by blue green algae and its economic importance. In: Symposia papers I. Non-symbiotic nitrogen fixation and organic matter in the tropics. Int Cong Soil Sci. 1982;12:69–82.

  36. Dhargalkar VK, Untawale AG. Some observation of the effect of SLF on higher plants. Indian J Mar Sci. 1983;12(1):210–4.

    Google Scholar 

  37. Strik WA, Aurthur GD, Lourens AF, Novak O, Strnad M, Staden JV, et al. Changes in cytokinins and auxin concentrations in seaweed concentrates when stored at an elevated temperature. J Appl Phycol. 2004;16:31–9. https://doi.org/10.1023/B:JAPH.0000019057.45363.f5.

    Article  Google Scholar 

  38. El-Barody GS, Moussa MY, Shallan AM, Ali AM, Sabh ZA, Shalaby AE. Contribution to the aroma, biological activities, minerals, protein, pigments and lipid contents of the red alga, Asparagopsis taxiformes (Delie) Trevisan. J Appl Sci Res. 2007;3(12):1825–34.

    Google Scholar 

  39. Thangam C, Dhananjayan R. Anti-inflammatory potential of the seeds of Carum copticum Linn. Indian J Pharmacol. 2003;35:388–90.

    Google Scholar 

  40. Leloup M, Nicolau R, Pallier V, Yéprémian C, Feuillade-Cathalifaud G. Organic matter produced by algae and cyanobacteria: quantitative and qualitative characterization. J Environ Sci. 2013;25(6):1089–97. https://doi.org/10.1016/S1001-0742(12)60208-3.

    Article  CAS  Google Scholar 

  41. Venkataraman GS. Algal biofertilizers and rice cultivation. New Delhi: Today and Tomorrow Printers and Publishers; 1972.

    Google Scholar 

  42. Renuka N, Guldhe A, Prasanna R, Singh P, Bux F. Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnol Adv. 2018;36:1255–73. https://doi.org/10.1016/j.biotechadv.2018.04.004.

    Article  CAS  PubMed  Google Scholar 

  43. Krings M, Hass H, Kerp H, Taylor TN, Agerer R, Dotzler N. Endophytic cyanobacteria in a 400-million-yr-old land plant: a scenario for the origin of a symbiosis? Rev Palaeobot Palynol. 2009;153(1–2):62–6. https://doi.org/10.1016/j.revpalbo.2008.06.006.

    Article  Google Scholar 

  44. Aliyu OM, Adeigbe OO, Awopetu JA. Foliar application of the exogenous plant hormones at pre-blooming stage improves flowering and fruiting in cashews (Anacardium occidentale L.). J Crop Sci Biotechnol. 2011;14(2):143–150. https://doi.org/10.1007/s12892-010-0070-3

  45. Saha KC, Mandal LN. Effect of algal growth on the availability of phosphorus, iron, and manganese in rice soil. Plant Soil. 1979;52:139–46.

    Article  CAS  Google Scholar 

  46. Subhashini D, Kaushik BD. Amelioration of sodic soils with blue-green algae. Aust J Soil Res. 1981;19:361–6. https://doi.org/10.1071/SR9810361.

    Article  Google Scholar 

  47. Das SC, Mandal B, Mandal LN. Effect of growth and subsequent decomposition of blue-green algae on the transformation of iron and manganese in submerged soils. Plant Soil. 1991;138:75–84. https://doi.org/10.1007/BF00011810.

    Article  CAS  Google Scholar 

  48. Lange W. Speculations on a possible essential function of the gelatinous sheath of blue-green algae. Can J Microbiol. 1976;22:1181–5. https://doi.org/10.1139/m76-171.

    Article  CAS  PubMed  Google Scholar 

  49. Whitton BA. Soils and rice fields. In: Whitton BA, Potts M, editors. The ecology of cyanobacteria: their diversity in time and space. Netherlands: Springer; 2000, p. 233–255. https://doi.org/10.1007/0-306-46855-7

  50. Thivy F. Seaweed manure for perfect soil and smiling fields. Salt Res Ind. 1964;1:1–4.

    Google Scholar 

  51. Venkataraman GS. Algal biofertilizers for rice cultivation. New Delhi: Today & Tomorrow; 1972.

    Google Scholar 

  52. G.S. Venkataraman. In: Stewart WDP, editors. Nitrogen fixation by free-living microorganisms. London: Cambridge University Press; 1975, p. 207–218. https://doi.org/10.1016/S0065-2113(08)60214-X

  53. Schopf JW. Fossil evidence of Archaean life. Philos Trans R Soc B. 2006;361:869–88. https://doi.org/10.1098/rstb.2006.1834.

    Article  CAS  Google Scholar 

  54. Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R. Consortial degradation of high molecular weight polycyclic aromatic hydrocarbons by bacterial consortium isolated from contaminated sites. Bioresour Technol. 2011;102(3):2276–84.

    Google Scholar 

  55. Shpigel M, Zohar Y. The use of Spirulina in Israel. Hydrobiologia. 1989;180(1):147–52.

    Google Scholar 

  56. Borowitzka MA. High-value products from microalgae—their development and commercialization. J Appl Phycol. 2013;25(3):743–56.

    Article  CAS  Google Scholar 

  57. Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294–306.

    Article  CAS  PubMed  Google Scholar 

  58. Tejada M, Gonzalez JL. Influence of two organic amendments on the soil biological properties under greenhouse and outdoor conditions. Soil Biol Biochem. 2008;40(3):575–82.

    Google Scholar 

  59. Tiquia SM, Tam NFY. Bioremediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated sewage sludge. Compost Sci Util. 1998;6(2):77–88.

    Google Scholar 

  60. Glibert PM, Burkholder JM. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries Coast. 2011;35(2):245–58.

    Google Scholar 

  61. Guiry MD, Guiry GM. Algae Base. World-wide electronic publication, National University of Ireland, Galway. 2012. http://www.algaebase.org

  62. Milledge JJ, Heaven S. A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Biotechnol. 2013;12(2):165–78.

    Article  Google Scholar 

  63. Chinnasamy S, Bhatnagar A, Hunt RW. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol. 2010;101(9):3097–105.

    Article  CAS  PubMed  Google Scholar 

  64. Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G. Renella G. Microbial diversity and soil functions. Eur J Soil Sci. 2003;54(4):655–670.

  65. Shukla PS, Borza T, Critchley AT, Hiltz D, Norrie J, Prithiviraj B. Ascophyllum nodosum extract mitigates salinity stress in Arabidopsis thaliana by modulating the expression of miRNA involved in stress tolerance and nutrient acquisition. PLoS ONE. 2018;13(11): e0206221.

    Article  PubMed  PubMed Central  Google Scholar 

  66. El-Komy HM, Hassan EA. Algae extract as an elicitor of induced systemic resistance against citrus canker in Valencia orange plants. Plant Pathol J. 2019;35(3):239–49.

    Google Scholar 

  67. Kaushik BD, Venkataraman GS. Studies on the utilization of blue-green algae as biofertilizers. Soil Biol Biochem. 1981;13(3):183–8.

    Google Scholar 

  68. Tiwari A, Singh V, Thakur N. Nutraceuticals from freshwater Microalgae. Int J Therap Appl. 2016;32:5–10.

    Google Scholar 

  69. Archana T, Deepika S. Antibacterial activity of bloom forming cyanobacteria against clinically isolated human pathogenic microbes. J Algal Biomass Utln. 2013;4(1):83–9.

    Google Scholar 

  70. Tiwari A, Akshita S. Antifungal activity of Anabaena variabilis against Plant pathogens. Int J Pharma Biosci. 2013;4(2):1030–6.

    Google Scholar 

  71. Tiwari A. Cyanobacteria—recent advances and new perspectives. UK: Intech Open Publishers; 2023.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the University for the required infrastructure support.

Funding

We thank DBT for financial funding.

Author information

Authors and Affiliations

Authors

Contributions

NC: original manuscript; AT: data curation and reviewing; PKS: editing, visualization, and reviewing; HP: review, corrections illustrations; AT: reviewing, conceptualization, and supervision.

Corresponding author

Correspondence to Archana Tiwari.

Ethics declarations

Conflict of interest

All authors declare no competing interests.

Ethical approval

No ethical approval is required for the study.

Consent to participate

All authors give their consent to participate.

Consent for publication

All authors give their consent for publication.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, N., Tripathi, A., Singh, P.K. et al. Application of algae for enhanced plant growth and food productivity. Syst Microbiol and Biomanuf 4, 564–574 (2024). https://doi.org/10.1007/s43393-024-00233-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-024-00233-3

Keywords

Navigation