Skip to main content

Advertisement

Log in

A review on the impact of physical, chemical, and novel treatments on the quality and microbial safety of fruits and vegetables

  • Review
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

The sudden outbreak of the COVID-19 pandemic made people around the world more concerned about health and food safety. As a part of healthy diets, consumption of fruits and vegetables is essential to build strong immunity against various chronic diseases. However, contamination of fruits and vegetables may occur from farm to fork in the food supply chain process, thus affecting their post-harvest quality. Various disinfection technologies have been developed to prevent foodborne outbreaks caused by the consumption of unsafe food. This comprehensive review delves into the fundamental principles of physical, chemical, and novel treatments and their impact on the quality and shelf life of a wide range of fruits and vegetables. Chemical treatments such as chlorine dioxide, ozone, electrolyzed water, high-pressure carbon dioxide, and organic acids, as well as physical treatments, such as hot water blanching, steam blanching, and microwave blanching, have been discussed. Moreover, novel treatments such as cold plasma, UV light, pulsed electric field, and high hydrostatic pressure have also been explored. These treatments can be tailored to specific fruits and vegetables and integrated into food safety protocols to reduce the risk of foodborne outbreaks and improve the shelf life of these products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All the data are available in the manuscript.

References

  1. Deng L, Mujumdar AS, Zhang Q, Yang X, Wang J, Gao Z, Xiao H. Chemical and physical pretreatments of fruits and vegetables: effects on drying characteristics and quality attributes—a comprehensive review. Crit Rev Food Sci Nutr. 2017. https://doi.org/10.1080/10408398.2017.1409192.

    Article  PubMed  Google Scholar 

  2. Deng LZ, Mujumdar AS, Zhang Q, Yang XH, Wang J, Zheng ZA, Gao ZJ, Xiao HW. Chemical and physical pretreatments of fruits and vegetables: effects on drying characteristics and quality attributes – a comprehensive review. Crit Rev Food Sci Nutr. 2019;59(9):1408–32. https://doi.org/10.1080/10408398.2017.1409192.

    Article  CAS  PubMed  Google Scholar 

  3. Centers for Disease Control and Prevention (CDC). Foodborne germs and illnesses. 2017. https://www.cdc.gov/foodsafety/foodborne-germs.html.

  4. Negi S, Anand N. Cold chain: a weak link in the fruits and vegetables supply chain in India. IUP J Supply Chain Manag. 2015;12:48.

    Google Scholar 

  5. Vivek K, Singh SS, Ritesh W, Soberly M, Baby Z, Baite H, Mishra S, Pradhan RC. A review on postharvest management and advances in the minimal processing of fresh-cut fruits and vegetables. J Microbiol Biotechnol Food Sci. 2019. https://doi.org/10.15414/jmbfs.2019.8.5.1178-1187.

    Article  Google Scholar 

  6. Mostafidi M, Reza M, Shirkhan F. A review of recent trends in the development of the microbial safety of fruits and vegetables. Trends Food Sci Technol. 2020;103(July):321–32. https://doi.org/10.1016/j.tifs.2020.07.009.

    Article  CAS  Google Scholar 

  7. Yahya HN, Lignou S, Wagstaff C, Bell L. Changes in bacterial loads, gas composition, volatile organic compounds, and glucosinolates of fresh bagged Ready-To-Eat rocket under different shelf-life treatment scenarios. Postharvest Biol Technol. 2019;148:107–19. https://doi.org/10.1016/j.postharvbio.2018.10.021.

    Article  CAS  Google Scholar 

  8. Rojas-Graü MA, Soliva-Fortuny R, Martín-Belloso O. Edible coatings to incorporate active ingredients to fresh-cut fruits: a review. Trends Food Sci Technol. 2009;20(10):438–47. https://doi.org/10.1016/j.tifs.2009.05.002.

    Article  CAS  Google Scholar 

  9. Morales-de la Peña M, Welti-Chanes J, Martín-Belloso O. Novel technologies to improve food safety and quality. Curr Opin Food Sci. 2019;30:1–7. https://doi.org/10.1016/j.cofs.2018.10.009.

    Article  Google Scholar 

  10. Coban HB. Organic acids as antimicrobial food agents: applications and microbial productions. Bioprocess Biosyst Eng. 2020;43(4):569–91. https://doi.org/10.1007/s00449-019-02256-w.

    Article  CAS  PubMed  Google Scholar 

  11. Makroo HA, Majid D, Siddiqi MA, Greiner R, Dar BN. COVID-19 pandemic and its implications on food systems. 2020;2020(August):1–16. https://doi.org/10.20944/preprints202008.0321.v1.

  12. Rizou M, Galanakis IM, Aldawoud TMS, Galanakis CM. Safety of foods, food supply chain and environment within the COVID-19 pandemic. Trends Food Sci Technol. 2020;102(June):293–9. https://doi.org/10.1016/j.tifs.2020.06.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Theron MM, Lues JR. Organic acids and food preservation. Boca Raton: CRC Press; 2010.

    Book  Google Scholar 

  14. Ben Braïek O, Smaoui S. Chemistry, safety, and challenges of the use of organic acids and their derivative salts in meat preservation. J Food Qual. 2021;2021:1–20. https://doi.org/10.1155/2021/6653190.

    Article  CAS  Google Scholar 

  15. Anyasi TA, Jideani AIO, Edokpayi JN, Anokwuru CP. Application of organic acids in food preservation. In: Vargas C, editor. Organic acids, characteristics, properties and synthesis. New York: Nova Science; 2017. p. 1–47.

    Google Scholar 

  16. Umair M, Jabbar S, Ayub Z, Muhammad Aadil R, Abid M, Zhang J, Liqing Z. Recent advances in plasma technology: influence of atmospheric cold plasma on spore inactivation. Food Rev Int. 2022;38(sup1):789–811. https://doi.org/10.1080/87559129.2021.1888972.

    Article  CAS  Google Scholar 

  17. Liao X, Cullen PJ, Muhammad AI, Jiang Z, Ye X, Liu D, Ding T. Cold plasma–based hurdle interventions: new strategies for improving food safety. Food Eng Rev. 2020;12:321–32. https://doi.org/10.1007/s12393-020-09222-3.

    Article  Google Scholar 

  18. Pour AK, Khorram S, Ehsani A, Ostadrahimi A, Ghasempour Z. Atmospheric cold plasma effect on quality attributes of banana slices: its potential use in blanching process. Innov Food Sci Emerg Technol. 2022;76: 102945. https://doi.org/10.1016/j.ifset.2022.102945.

    Article  Google Scholar 

  19. De Corato U. Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for a modern food industry: a comprehensive critical review from the traditional technologies into the most promising advancements. Crit Rev Food Sci Nutr. 2020;60(6):940–75. https://doi.org/10.1080/10408398.2018.1553025.

    Article  CAS  PubMed  Google Scholar 

  20. Praeger U, Herppich WB, Hassenberg K. Aqueous chlorine dioxide treatment of horticultural produce: effects on microbial safety and produce quality—a review. Crit Rev Food Sci Nutr. 2018;58(2):318–33. https://doi.org/10.1080/10408398.2016.1169157.

    Article  CAS  PubMed  Google Scholar 

  21. Chen Z, Zhu C. Combined effects of aqueous chlorine dioxide and ultrasonic treatments on postharvest storage quality of plum fruit (Prunus salicina L.). Postharvest Biol Technol. 2011;61(2–3):117–23. https://doi.org/10.1016/j.postharvbio.2011.03.006.

    Article  CAS  Google Scholar 

  22. USFDA (United States Food and Drug Administration). Secondary direct food additives permitted in food for human consumption. 21 CFR. Sec. 173. 300 Chlorine dioxide. 2010.

  23. Chen Z, Zhu C, Han Z. Effects of aqueous chlorine dioxide treatment on nutritional components and shelf-life of mulberry fruit (Morus alba L.). J Biosci Bioeng. 2011;111(6):675–81. https://doi.org/10.1016/j.jbiosc.2011.01.010.

    Article  CAS  PubMed  Google Scholar 

  24. Chen Z. Development of a preservation technique for strawberry fruit (Fragaria × Ananassa duch.) by using aqueous chlorine dioxide. J Microbiol Biotechnol Food Sci. 2015;05(01):45–51. https://doi.org/10.15414/jmbfs.2015.5.1.45-51.

    Article  CAS  Google Scholar 

  25. Wei F, Fu M, Li J, Yang X, Chen Q, Tian S. Chlorine dioxide delays the reddening of postharvest green peppers by affecting the chlorophyll degradation and carotenoid synthesis pathways. Postharvest Biol Technol. 2018;2019(156):110939. https://doi.org/10.1016/j.postharvbio.2019.110939.

    Article  CAS  Google Scholar 

  26. Zhang B, Huang C, Zhang L, Wang J, Huang X, Zhao Y, Liu Y, Li C. Application of chlorine dioxide microcapsule sustained-release antibacterial films for preservation of mangoes. J Food Sci Technol. 2019;56(3):1095–103. https://doi.org/10.1007/s13197-019-03636-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thite AH, Menon GS. Effect of sewage irrigation on nitrate accumulation and nitrate reductase activity in leafy vegetables. Pak J Biol Sci. 2012;15(1):34–8. https://doi.org/10.3923/pjbs.2012.34.38.

    Article  PubMed  Google Scholar 

  28. Song P, Wu L, Guan W. Dietary nitrates, nitrites, and nitrosamines intake and the risk of gastric cancer: a meta-analysis. Nutrients. 2015;7(12):9872–95. https://doi.org/10.3390/nu7125505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mu Y, Feng Y, Wei L, Li C, Cai G, Zhu T. Combined effects of ultrasound and aqueous chlorine dioxide treatments on nitrate content during storage and postharvest storage quality of spinach (Spinacia oleracea L.). Food Chem. 2020;333:27500. https://doi.org/10.1016/j.foodchem.2020.127500.

    Article  CAS  Google Scholar 

  30. Shezi S, Samukelo ML, Mditshwa A, Zeray TS. Changes in biochemistry of fresh produce in response to ozone postharvest treatment. Sci Hortic. 2019;2020(269):109397. https://doi.org/10.1016/j.scienta.2020.109397.

    Article  CAS  Google Scholar 

  31. de Souza LP, de Faroni LRDA, Heleno FF, Pinto FG, de Queiroz MELR, Prates LHF. Ozone treatment for pesticide removal from carrots: optimization by response surface methodology. Food Chem. 2017;2018(243):435–41. https://doi.org/10.1016/j.foodchem.2017.09.134.

    Article  CAS  Google Scholar 

  32. Hua-Li X, Yang B, Raza H, Hu-Jun W, Lu-Mei P, Mi-Na N, Xiao-Yan C, Yi W, Yong-Cai L. Detection of NEO in muskmelon fruits inoculated with Fusarium sulphureum and its control by postharvest ozone treatment. Food Chem. 2018;254(January):193–200. https://doi.org/10.1016/j.foodchem.2018.01.149.

    Article  CAS  PubMed  Google Scholar 

  33. Goffi V, Magri A, Botondi R, Petriccione M. Response of antioxidant system to postharvest ozone treatment in ‘Soreli’ kiwifruit. J Sci Food Agric. 2020;100(3):961–8. https://doi.org/10.1002/jsfa.10055.

    Article  CAS  PubMed  Google Scholar 

  34. Chen C, Zhang H, Zhang X, Dong C, Xue W, Xu W. The effect of different doses of ozone treatments on the postharvest quality and biodiversity of cantaloupes. Postharvest Biol Technol. 2020. https://doi.org/10.1016/j.postharvbio.2020.111124.

    Article  Google Scholar 

  35. Antos P, Piechowicz B, Gorzelany J, Matłok N, Migut D, Józefczyk R, Balawejder M. Effect of ozone on fruit quality and fungicide residue degradation in apples during cold storage. Ozone Sci Eng. 2018;40(6):482–6. https://doi.org/10.1080/01919512.2018.1471389.

    Article  CAS  Google Scholar 

  36. Contigiani EV, Jaramillo-Sánchez G, Castro MA, Gómez PL, Alzamora SM. Postharvest quality of strawberry fruit (Fragaria x Ananassa Duch cv. Albion) as affected by ozone washing: fungal spoilage, mechanical properties, and structure. Food Bioprocess Technol. 2018;11(9):1639–50. https://doi.org/10.1007/s11947-018-2127-0.

    Article  CAS  Google Scholar 

  37. Piechowiak T, Grzelak-Błaszczyk K, Sójka M, Balawejder M. Changes in phenolic compounds profile and glutathione status in raspberry fruit during storage in ozone-enriched atmosphere. Postharvest Biol Technol. 2020. https://doi.org/10.1016/j.postharvbio.2020.111277.

    Article  Google Scholar 

  38. Goffi V, Zampella L, Forniti R, Petriccione M, Botondi R. Effects of ozone postharvest treatment on physicochemical and qualitative traits of Actinidia chinensis ‘Soreli’ during cold storage. J Sci Food Agric. 2019;99(13):5654–61. https://doi.org/10.1002/jsfa.9823.

    Article  CAS  PubMed  Google Scholar 

  39. Liu C, Chen C, Zhang Y, Jiang A, Hu W. Aqueous ozone treatment inhibited degradation of cellwall polysaccharides in fresh-cut apple during cold storage. Innov Food Sci Emerg Technol. 2020. https://doi.org/10.1016/j.ifset.2020.102550.

    Article  Google Scholar 

  40. Buluc O, Koyuncu MA. Effects of intermittent ozone treatment on postharvest quality and storage life of pomegranate. Ozone Sci Eng. 2020;61(2–3):117–23. https://doi.org/10.1080/01919512.2020.1816449.

    Article  CAS  Google Scholar 

  41. Hao J, Wang Q. Application of electrolyzed water in fruits and vegetables industry. In: Ding T, Oh D-H, Liu D, editors. Electrolyzed water in food: fundamentals and applications. Singapore: Springer Singapore; 2019. p. 67–111.

    Chapter  Google Scholar 

  42. Hricova D, Stephan R, Zweifel C. Electrolyzed water and its application in the food industry. J Food Prot. 2008;71(9):1934–47. https://doi.org/10.4315/0362-028X-71.9.1934.

    Article  CAS  PubMed  Google Scholar 

  43. Pinto L, Baruzzi F, Ippolito A. Recent advances to control spoilage microorganisms in washing water of fruits and vegetables : the use of electrolyzed water. In: III international symposium on postharvest pathology: using science to increase food availability. 2016;1144:379–84. https://doi.org/10.17660/ActaHortic.2016.1144.72.

  44. Fu MR, Zhang XM, Jin T, Li BQ, Zhang ZQ, Tian SP. Inhibitory of grey mold on green pepper and winter jujube by chlorine dioxide (ClO2) fumigation and its mechanisms. LWT. 2019;100:335–40. https://doi.org/10.1016/j.lwt.2018.10.092.

    Article  CAS  Google Scholar 

  45. Calvo H, Redondo D, Remón S, Venturini ME, Arias E. Efficacy of electrolyzed water, chlorine dioxide and photocatalysis for disinfection and removal of pesticide residues from stone fruit. Postharvest Biol Technol. 2019;148:22–31. https://doi.org/10.1016/j.postharvbio.2018.10.009.

    Article  CAS  Google Scholar 

  46. Gutiérrez DR, Chaves AR, Rodríguez SDC. UV-C and ozone treatment influences on the antioxidant capacity and antioxidant system of minimally processed rocket (Eruca sativa Mill.). Postharvest Biol Technol. 2018;138(December 2017):107–13. https://doi.org/10.1016/j.postharvbio.2017.12.014.

    Article  CAS  Google Scholar 

  47. Brié A, Boudaud N, Mssihid A, Loutreul J, Bertrand I, Gantzer C. Inactivation of murine norovirus and hepatitis A virus on fresh raspberries by gaseous ozone treatment. Food Microbiol. 2018;70:1–6. https://doi.org/10.1016/j.fm.2017.08.010.

    Article  CAS  PubMed  Google Scholar 

  48. Hopkins DZ, Parisi MA, Dawson PL, Northcutt JK. Surface decontamination of fresh, whole peaches (Prunus persica) using Sodium hypochlorite or acidified electrolyzed water solutions solutions. Int J Fruit Sci. 2020. https://doi.org/10.1080/15538362.2020.1822269.

    Article  Google Scholar 

  49. Cap M, Rojas D, Fernandez M, Fulco M, Rodriguez A, Soteras T, Cristos D, Mozgovoj M. Effectiveness of short exposure times to electrolyzed water in reducing Salmonella spp. and Imidacloprid in lettuce. LWT. 2020;128(April):09496. https://doi.org/10.1016/j.lwt.2020.109496.

    Article  CAS  Google Scholar 

  50. Sagong HG, Lee SY, Chang PS, Heu S, Ryu S, Choi YJ, Kang DH. Combined effect of ultrasound and organic acids to reduce Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh lettuce. Int J Food Microbiol. 2011;145(1):287–92. https://doi.org/10.1016/j.ijfoodmicro.2011.01.010.

    Article  PubMed  Google Scholar 

  51. Akbas MY, Olmez H. Effectiveness of organic acid, ozonated water, and chlorine dippings on microbial reduction and storage quality of fresh-cut iceberg lettuce. J Sci Food Agric. 2007;1243(May):1237–43. https://doi.org/10.1002/jsfa.

    Article  CAS  Google Scholar 

  52. Hiranvarachat B, Devahastin S, Chiewchan N. Effects of acid pretreatments on some physicochemical properties of carrot undergoing hot air drying. Food Bioprod Process. 2011;89(2):116–27. https://doi.org/10.1016/j.fbp.2010.03.010.

    Article  CAS  Google Scholar 

  53. Ngnitcho PFK, Khan I, Tango CN, Hussain MS, Oh DH. Inactivation of bacterial pathogens on lettuce, sprouts, and spinach using hurdle technology. Innov Food Sci Emerg Technol. 2017;43:68–76. https://doi.org/10.1016/j.ifset.2017.07.033.

    Article  CAS  Google Scholar 

  54. Chen C, Hu W, He Y, Jiang A, Zhang R. Effect of citric acid combined with UV-C on the quality of fresh-cut apples. Postharvest Biol Technol. 2016;111:126–31. https://doi.org/10.1016/j.postharvbio.2015.08.005.

    Article  CAS  Google Scholar 

  55. Kingsly RP, Goyal RK, Manikantan MR, Ilyas SM. Effects of pretreatments and drying air temperature on drying behaviour of peach slice. Int J Food Sci Technol. 2007;42(1):65–9. https://doi.org/10.1111/j.1365-2621.2006.01210.x.

    Article  CAS  Google Scholar 

  56. Chandra D, Choi AJ, Lee JS, Lee J, Kim JG. Changes in physicochemical and sensory qualities of “Goha” strawberries treated with different conditions of carbon dioxide. Agric Sci. 2015;06(03):325–34. https://doi.org/10.4236/as.2015.63033.

    Article  Google Scholar 

  57. Ma W, Li J, Murtaza A, Iqbal A, Zhang J, Zhu L, Xu X, Pan S, Hu W. High-pressure carbon dioxide treatment alleviates browning development by regulating membrane lipid metabolism in fresh-cut lettuce. Food Control. 2022;134:108749. https://doi.org/10.1016/j.foodcont.2021.108749.

    Article  CAS  Google Scholar 

  58. Rico D, Martín-diana AB, Barry-ryan C, Frías JM, Henehan GTM, Barat JM. Use of neutral electrolysed water (EW) for quality maintenance and shelf-life extension of minimally processed lettuce. Innov Food Sci Emerg Technol. 2008;9:37–48. https://doi.org/10.1016/j.ifset.2007.05.002.

    Article  CAS  Google Scholar 

  59. Guerra-Sierra BE, Sandoval-Meza AX, García-Sanchéz LT. Antifungal activity of acidic electrolyzed water against strawberry postharvest molds (Fragaria x ananassa Duch cv. Camarosa). Acta Agron. 2019;68(2):126–33. https://doi.org/10.15446/acag.v68n2.78247.

    Article  Google Scholar 

  60. Kuljaroensub V, Whangchai K, Chanasut U. Effects of acidic electrolyzed water with different temperatures on microbial control and quality of fresh-cut banana leaves during storage. Int J Geomate. 2019;16(56):147–52. https://doi.org/10.21660/2019.56.4739.

    Article  Google Scholar 

  61. Li X, Yue H, Xu S, Tian J, Zhao Y, Xu J. The effect of electrolyzed water on fresh-cut eggplant in storage period. LWT. 2019;2020(123):109080. https://doi.org/10.1016/j.lwt.2020.109080.

    Article  CAS  Google Scholar 

  62. Ogunniyi AD, Tenzin S, Ferro S, Venter H, Pi H, Amorico T, Deo P, Trott DJ. A pH-neutral electrolyzed oxidizing water significantly reduces microbial contamination of fresh spinach leaves. Food Microbiol. 2021;93(220):103614. https://doi.org/10.1016/j.fm.2020.103614.

    Article  CAS  PubMed  Google Scholar 

  63. Zhou L, Liao T, Liu W, Zou L, Liu C, Terefe NS. Inhibitory effects of organic acids on polyphenol oxidase: from model systems to food systems. Crit Rev Food Sci Nutr. 2020;60(21):3594–621. https://doi.org/10.1080/10408398.2019.1702500.

    Article  CAS  PubMed  Google Scholar 

  64. Lepaus BM, Rocha JS, de São José JFB. Organic acids and hydrogen peroxide can replace chlorinated compounds as sanitizers on strawberries, cucumbers and rocket leaves. Food Sci Technol. 2020;40(June):242–9. https://doi.org/10.1590/fst.09519.

    Article  Google Scholar 

  65. Plesoianu AM, Tutulescu F, Nour V. Postharvest antimicrobial treatments with organic acids to improve the shelf life of fresh blueberries. Not Bot Hortic Agrobot Cluj Napoca. 2020;48(1):90–101. https://doi.org/10.15835/NBHA48111828.

    Article  CAS  Google Scholar 

  66. Hong SI, Kim DM. Storage quality of chopped garlic as influenced by organic acids and high-pressure treatment. J Sci Food Agric. 2001;81(4):397–403. https://doi.org/10.1002/1097-0010(200103)81:4%3c397::AID-JSFA831%3e3.0.CO;2-R.

    Article  CAS  Google Scholar 

  67. Joas J, Caro Y, Ducamp MN, Reynes M. Postharvest control of pericarp browning of litchi fruit (Litchi chinensis Sonn cv Kwaï Mi) by treatment with chitosan and organic acids: I. Effect of pH and pericarp dehydration. Postharvest Biol Technol. 2005;38(2):128–36. https://doi.org/10.1016/j.postharvbio.2005.06.013.

    Article  CAS  Google Scholar 

  68. Pounraj S, Bhilwadikar T, Manivannan S, Rastogi NK, Negi PS. Effect of ozone, lactic acid and combination treatments on the control of microbial and pesticide contaminants of fresh vegetables. J Sci Food Agric. 2020. https://doi.org/10.1002/jsfa.10972.

    Article  PubMed  Google Scholar 

  69. Hauser C, Thielmann J, Muranyi P. Organic acids: usage and potential in antimicrobial packaging. In: Barros-Velázquez J, editor. Antimicrobial food packaging. Cambridge: Academic Press; 2016. p. 563–80. https://doi.org/10.1016/B978-0-12-800723-5.00046-2.

    Chapter  Google Scholar 

  70. FAO. Regulation (EC) No 1333/2008 of the European Parliament and of the Council on food additives. Off J Eur Union. 2008;354:16–33.

    Google Scholar 

  71. Spilimbergo S, Komes D, Vojvodic A, Levaj B, Ferrentino G. High pressure carbon dioxide pasteurization of fresh-cut carrot. J Supercrit Fluids. 2013;79:92–100. https://doi.org/10.1016/j.supflu.2012.12.002.

    Article  CAS  Google Scholar 

  72. Marszałek K, Woźniak Ł, Kruszewski B, Skapska S. The effect of high pressure techniques on the stability of anthocyanins in fruit and vegetables. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18020277.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ferrentino G, Spilimbergo S. High pressure carbon dioxide pasteurization of solid foods: current knowledge and future outlooks. Trends Food Sci Technol. 2011;22(8):427–41. https://doi.org/10.1016/j.tifs.2011.04.009.

    Article  CAS  Google Scholar 

  74. Li R, Wang Y, Hu W, Liao X. Changes in the activity, dissociation, aggregation, and the secondary and tertiary structures of a thaumatin-like protein with a high polyphenol oxidase activity induced by high pressure CO2. Innov Food Sci Emerg Technol. 2014;23:68–78. https://doi.org/10.1016/j.ifset.2014.02.013.

    Article  CAS  Google Scholar 

  75. Ferrentino G, Komes D, Spilimbergo S. High-power ultrasound assisted high-pressure carbon dioxide pasteurization of fresh-cut coconut: a microbial and physicochemical study. Food Bioprocess Technol. 2015;8(12):2368–82. https://doi.org/10.1007/s11947-015-1582-0.

    Article  CAS  Google Scholar 

  76. Chhe C, Imaizumi T, Tanaka F, Uchino T. Effects of hot-water blanching on the biological and physicochemical properties of sweet potato slices. Eng Agric Environ. 2018;11(1):19–24. https://doi.org/10.1016/j.eaef.2017.10.002.

    Article  Google Scholar 

  77. De Corcuera JIR, Cavalieri RP, Powers JR. Blanching of foods. In: Encyclopedia of agri, food and biological engineering. New York City: Marcel Dekker; 2004. p. 1–5.

  78. Kachhadiya S, Kumar N, Seth N. Process kinetics on physico-chemical and peroxidase activity for different blanching methods of sweet corn. J Food Sci Technol. 2018;55(12):4823–32. https://doi.org/10.1007/s13197-018-3416-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim AN, Lee KY, Rahman MS, Kim HJ, Chun J, Heo HJ, Kerr WL, Choi SG. Effect of water blanching on phenolic compounds, antioxidant activities, enzyme inactivation, microbial reduction, and surface structure of samnamul (Aruncus dioicus var kamtschaticus). Int J Food Sci Technol. 2020;55(4):1754–62. https://doi.org/10.1111/ijfs.14424.

    Article  CAS  Google Scholar 

  80. Zhang B, Qiu Z, Zhao R, Zheng Z, Lu X, Qiao X. Effect of blanching and freezing on the physical properties, bioactive compounds, and microstructure of garlic (Allium sativum L.). J Food Sci. 2020;86(1):31–9. https://doi.org/10.1111/1750-3841.15525.

    Article  CAS  PubMed  Google Scholar 

  81. Kumara BAMS, Wijewardane RMNA, Samarasinghe YMP. The effect of anti-browning treatments for fresh-cut guava slices in prevention of browning during dehydration. J Agric Sci. 2021;16(1):28–36.

    Google Scholar 

  82. Song JY, An GH, Kim CJ. Color, texture, nutrient contents, and sensory values of vegetable soybeans [Glycine max (L.) Merrill] as affected by blanching. Food Chem. 2003;83(1):69–74. https://doi.org/10.1016/S0308-8146(03)00049-9.

    Article  CAS  Google Scholar 

  83. Saldivar X, Wang YJ, Chen P, Mauromoustakos A. Effects of blanching and storage conditions on soluble sugar contents in vegetable soybean. LWT. 2010;43(9):1368–72. https://doi.org/10.1016/j.lwt.2010.04.017.

    Article  CAS  Google Scholar 

  84. Shivhare US, Gupta M, Basu S, Raghavan GSV. Optimization of blanching process for carrots. J Food Process Eng. 2009;32(4):587–605. https://doi.org/10.1111/j.1745-4530.2007.00234.x.

    Article  Google Scholar 

  85. Severini C, Giuliani R, De Filippis A, Derossi A, De Pilli T. Influence of different blanching methods on colour, ascorbic acid and phenolics content of broccoli. J Food Sci Technol. 2016;53(1):501–10. https://doi.org/10.1007/s13197-015-1878-0.

    Article  CAS  PubMed  Google Scholar 

  86. Gamboa-Santos J, Cristina Soria A, Pérez-Mateos M, Carrasco JA, Montilla A, Villamiel M. Vitamin C content and sensorial properties of dehydrated carrots blanched conventionally or by ultrasound. Food Chem. 2013;136(2):782–8. https://doi.org/10.1016/j.foodchem.2012.07.122.

    Article  CAS  PubMed  Google Scholar 

  87. Bamidele O, Fasogbon M, Adebowale O, Adeyanju A. Effect of blanching time on total phenolic, antioxidant activities and mineral content of selected green leafy vegetables. Curr J Appl Sci Technol. 2017;24(4):1–8. https://doi.org/10.9734/cjast/2017/34808.

    Article  CAS  Google Scholar 

  88. Guiamba II, Ahrné L, Svanberg U. Enhancing the retention of-carotene and vitamin C in dried mango using alternative blanching processes. Afr J Food Sci. 2018;12(7):165–74. https://doi.org/10.5897/AJFS2017.1645.

    Article  CAS  Google Scholar 

  89. Garba U, Kaur S, Gurumayum S, Rasane P. Effect of hot water blanching time and drying temperature on the thin layer drying kinetics of and anthocyanin degradation in black carrot (Daucus carota L.) shreds. Food Technol Biotechnol. 2015;53(3):324–30. https://doi.org/10.17113/ftb.53.03.15.3830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang HO, Fu QQ, Chen SJ, Hu ZC, Xie HX. Effect of hot-water blanching pretreatment on drying characteristics and product qualities for the novel integrated freeze-drying of apple slices. J Food Qual. 2018;2018:1–12. https://doi.org/10.1155/2018/1347513.

    Article  CAS  Google Scholar 

  91. Tao Y, Han M, Gao X, Han Y, Show PL, Liu C, Ye X, Xie G. Applications of water blanching, surface contacting ultrasound-assisted air drying, and their combination for dehydration of white cabbage: drying mechanism, bioactive profile, color and rehydration property. Ultrason Sonochem. 2018;2019(53):192–201. https://doi.org/10.1016/j.ultsonch.2019.01.003.

    Article  CAS  Google Scholar 

  92. Xu R, Zhou X, Wang S. Comparative analyses of three pretreatments on color of kiwifruits during hot air drying. Int J Agric Biol Eng. 2020;13(2):228–34. https://doi.org/10.25165/j.ijabe.20201302.5489.

    Article  Google Scholar 

  93. Rana R, Islam A, Sabuz AA, Hasan M, Ara R. Effect of blanching pretreatments on the physicochemical and drying characteristics of Chui Jhal (Piper chaba H.) stem. Int J Food Sci Agric. 2020;4(4):482–91. https://doi.org/10.26855/ijfsa.2020.12.017.

    Article  Google Scholar 

  94. Ndiaye C, Xu SY, Wang Z. Steam blanching effect on polyphenoloxidase, peroxidase and colour of mango (Mangifera indica L.) slices. Food Chem. 2009;113(1):92–5. https://doi.org/10.1016/j.foodchem.2008.07.027.

    Article  CAS  Google Scholar 

  95. Fante L, Noreña CPZ. Enzyme inactivation kinetics and colour changes in Garlic (Allium sativum L.) blanched under different conditions. J Food Eng. 2012;108(3):436–43. https://doi.org/10.1016/j.jfoodeng.2011.08.024.

    Article  CAS  Google Scholar 

  96. Shao X, Chen H, Pan H, Ritenour MA, Hu C, Xu Q, Bao X. Effect of steam blanching on peelability and quality of Citrus reticulata Blanco. J Food Sci Technol. 2021;58:3790–7. https://doi.org/10.1007/s13197-020-04839-y.

    Article  CAS  PubMed  Google Scholar 

  97. Sledz M, Wiktor A, Rybak K, Nowacka M, Witrowa-Rajchert D. The impact of ultrasound and steam blanching pre-treatments on the drying kinetics, energy consumption and selected properties of parsley leaves. Appl Acoust. 2016;103:148–56. https://doi.org/10.1016/j.apacoust.2015.05.006.

    Article  Google Scholar 

  98. Wickramasinghe YWH, Wickramasinghe I, Wijesekara I. Effect of steam blanching, dehydration temperature & time, on the sensory and nutritional properties of a herbal tea developed from Moringa oleifera leaves. Int J Food Sci. 2020. https://doi.org/10.1155/2020/5376280.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Liburdi K, Benucci I, Esti M. Effect of microwave power and blanching time in relation to different geometric shapes of vegetables. LWT. 2018;2019(99):497–504. https://doi.org/10.1016/j.lwt.2018.10.029.

    Article  CAS  Google Scholar 

  100. Ramesh MN, Wolf W, Tevini D, Bognar A. Microwave blanching of vegetables. J Food Sci. 2002;67(1):390–8. https://doi.org/10.1111/j.1365-2621.2002.tb11416.x.

    Article  CAS  Google Scholar 

  101. Zheng H, Lu H. Effect of microwave pretreatment on the kinetics of ascorbic acid degradation and peroxidase inactivation in different parts of green asparagus (Asparagus officinalis L.) during water blanching. Food Chem. 2011;128(4):1087–93. https://doi.org/10.1016/j.foodchem.2011.03.130.

    Article  CAS  Google Scholar 

  102. Bernaś E, Jaworska G. Effect of microwave blanching on the quality of frozen Agaricus bisporus. Food Sci Technol Int. 2015;21(4):245–55. https://doi.org/10.1177/1082013214529956.

    Article  CAS  PubMed  Google Scholar 

  103. Dorantes-Alvarez L, Jaramillo-Flores E, González K, Martinez R, Parada L. Blanching peppers using microwaves. Procedia Food Sci. 2011;1:178–83. https://doi.org/10.1016/j.profoo.2011.09.028.

    Article  CAS  Google Scholar 

  104. Li B, Kimatu BM, Pei F, Chen S, Feng X, Hu Q, Zhao L. Non-volatile flavour components in Lentinus edodes after hot water blanching and microwave blanching. Int J Food Prop. 2018;20(3):S2532–42. https://doi.org/10.1080/10942912.2017.1373667.

    Article  CAS  Google Scholar 

  105. Dibanda RF, Akdowa EP, Tongwa QM. Effect of microwave blanching on antioxidant activity, phenolic compounds and browning behaviour of some fruit peelings. Food Chem. 2020;302:125308. https://doi.org/10.1016/j.foodchem.2019.125308.

    Article  CAS  Google Scholar 

  106. Liu P, Mujumdar AS, Zhang M, Jiang H. Comparison of three blanching treatments on the color and anthocyanin level of the microwave-assisted spouted bed drying of purple flesh sweet potato. Dry Technol. 2015;33(1):66–71. https://doi.org/10.1080/07373937.2014.936558.

    Article  CAS  Google Scholar 

  107. Srimagal A, Mishra S, Pradhan RC. Effects of ethyl oleate and microwave blanching on drying kinetics of bitter gourd. J Food Sci Technol. 2017;54(5):1192–8. https://doi.org/10.1007/s13197-017-2518-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jiang H, Liu Z, Wang S. Microwave processing: effects and impacts on food components. Crit Rev Food Sci Nutr. 2018;58(14):2476–89. https://doi.org/10.1080/10408398.2017.1319322.

    Article  CAS  PubMed  Google Scholar 

  109. Martins CP, Ramos GL, Pimentel TC, Freitas MQ, Duarte MC, Azeredo DP, Silva MC, Cavalcanti RN, Esmerino EA, Cruz AG. How microwave technology is perceived? A food safety cross-cultural study between Brazil and Portugal. Food Control. 2022;134:108763. https://doi.org/10.1016/j.foodcont.2021.108763.

    Article  CAS  Google Scholar 

  110. Popalia C, Kumar N. Effect of temperature and processing time on physico-chemical characteristics in hot water blanching of sweet corn kernels. J Inst Eng (India) A. 2021;102:163–73. https://doi.org/10.1007/s40030-021-00508-1.

    Article  CAS  Google Scholar 

  111. Weil M, Sing ASC, Méot JM, Boulanger R, Bohuon P. Impact of blanching, sweating and drying operations on pungency, aroma and color of Piper borbonense. Food Chem. 2017;219:274–81. https://doi.org/10.1016/j.foodchem.2016.09.144.

    Article  CAS  PubMed  Google Scholar 

  112. Dandamrongrak R, Young G, Mason R. Evaluation of various pre-treatments for the dehydration of banana and selection of suitable drying models. J Food Eng. 2002;55(2):139–46. https://doi.org/10.1016/S0260-8774(02)00028-6.

    Article  Google Scholar 

  113. Putsakum G, Rahman N, Kamilah H, Mahmood K, Ariffin F. The effects of blanching pretreatment and immersion of sodium metabisulfite/citric acid solution on the myristicin content and the quality parameter of nutmeg (Myristica fragrans) pericarp. J Food Meas Charact. 2020;14(6):3455–61. https://doi.org/10.1007/s11694-020-00584-0.

    Article  Google Scholar 

  114. Krokida MK, Kiranoudis CT, Maroulis ZB, Marinos-Kouris D. Effect of pretreatment on color of dehydrated products. Dry Technol. 2000;18(6):1239–50. https://doi.org/10.1080/07373930008917745.

    Article  CAS  Google Scholar 

  115. Araújo AC, Oliveira SM, Ramos IN, Brandão TR, Silva CL. Influence of pretreatments on quality parameters and nutritional compounds of dried galega kale (Brassica oleracea L. var acephala). Food Bioprocess Technol. 2016;9:872–81. https://doi.org/10.1007/s11947-016-1678-1.

    Article  CAS  Google Scholar 

  116. Ruiz-Ojeda LM, Peñas FJ. Comparison study of conventional hot-water and microwave blanching on quality of green beans. Innov Food Sci Emerg Technol. 2013;20:191–7. https://doi.org/10.1016/j.ifset.2013.09.009.

    Article  CAS  Google Scholar 

  117. Başkaya Sezer D, Demirdöven A. The effects of microwave blanching conditions on carrot slices: optimization and comparison. J Food Process Preserv. 2015;39(6):2188–96. https://doi.org/10.1111/jfpp.12463.

    Article  CAS  Google Scholar 

  118. Pasquali F, Stratakos AC, Koidis A, Berardinelli A, Cevoli C, Ragni L, Mancusi R, Manfreda G, Trevisani M. Atmospheric cold plasma process for vegetable leaf decontamination: a feasibility study on radicchio (red chicory, Cichorium intybus L.). Food Control. 2016;60:552–9. https://doi.org/10.1016/j.foodcont.2015.08.043.

    Article  CAS  Google Scholar 

  119. Esua OJ, Cheng JH, Sun DW. Antimicrobial activities of plasma-functionalized liquids against foodborne pathogens on grass carp (Ctenopharyngodon Idella). Appl Microbiol Biotechnol. 2020;104:9581–94. https://doi.org/10.1007/s00253-020-10926-z.

    Article  CAS  PubMed  Google Scholar 

  120. Guo J, Huang K, Wang J. Bactericidal effect of various non-thermal plasma agents and the influence of experimental conditions in microbial inactivation: a review. Food Control. 2015;50:482–90. https://doi.org/10.1016/j.foodcont.2014.09.037.

    Article  CAS  Google Scholar 

  121. Liao X, Xiang Q, Liu D, Chen S, Ye X, Ding T. Lethal and sublethal effect of a dielectric barrier discharge atmospheric cold plasma on Staphylococcus aureus. J Food Prot. 2017;80(6):928–32. https://doi.org/10.4315/0362-028X.JFP-16-499.

    Article  PubMed  Google Scholar 

  122. Pan Y, Cheng JH, Sun DW. Cold plasma-mediated treatments for shelf-life extension of fresh produce: a review of recent research developments. Compr Rev Food Sci Food Saf. 2019;18(5):1312–26. https://doi.org/10.1111/1541-4337.12474.

    Article  PubMed  Google Scholar 

  123. Ekezie FGC, Sun DW, Cheng JH. Altering the IgE binding capacity of king prawn (Litopenaeus Vannamei) tropomyosin through conformational changes induced by cold argon-plasma jet. Food Chem. 2019;300:125143. https://doi.org/10.1016/j.foodchem.2019.125143.

    Article  CAS  PubMed  Google Scholar 

  124. Esua OJ, Cheng JH, Sun DW. Optimisation of treatment conditions for reducing Shewanella putrefaciens and Salmonella Typhimurium on grass carp treated by thermoultrasound-assisted plasma functionalized buffer. Ultrason Sonochem. 2021;76:105609. https://doi.org/10.1016/j.ultsonch.2021.105609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tappi S, Gozzi G, Vannini L, Berardinelli A, Romani S, Ragni L, Rocculi P. Cold plasma treatment for fresh-cut melon stabilization. Innov Food Sci Emerg Technol. 2016;33:225–33. https://doi.org/10.1016/j.ifset.2015.12.022.

    Article  CAS  Google Scholar 

  126. Rashwan AK, Karim N, Shishir MRI, Bao T, Lu Y, Chen W. Jujube fruit: a potential nutritious fruit for the development of functional food products. J Funct Foods. 2020;75:104205. https://doi.org/10.1016/j.jff.2020.104205.

    Article  CAS  Google Scholar 

  127. Xia Q, Liu Q, Denoya GI, Yang C, Barba FJ, Yu H, Chen X. High hydrostatic pressure-based combination strategies for microbial inactivation of food products: the cases of emerging combination patterns. Front Nutr. 2022;9:878904. https://doi.org/10.3389/fnut.2022.878904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Huang HW, Hsu CP, Wang CY. Healthy expectations of high hydrostatic pressure treatment in food processing industry. J Food Drug Anal. 2020;28(1):1–13. https://doi.org/10.1016/j.jfda.2019.10.002.

    Article  CAS  PubMed  Google Scholar 

  129. Wang CY, Wang YT, Wu SJ, Shyu YT. Quality changes in high hydrostatic pressure and thermal pasteurized grapefruit juice during cold storage. J Food Sci Technol. 2018;55:5115–22. https://doi.org/10.1007/s13197-018-3452-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yamamoto K. Food processing by high hydrostatic pressure. Biosci Biotechnol Biochem. 2017;81(4):672–9. https://doi.org/10.1080/09168451.2017.1281723.

    Article  CAS  PubMed  Google Scholar 

  131. Buitimea-Cantúa GV, Rico-Alderete IA, Rostro-Alanís MDJ, Welti-Chanes J, Escobedo-Avellaneda ZJ, Soto-Caballero MC. Effect of high hydrostatic pressure and pulsed electric fields processes on microbial safety and quality of black/red raspberry juice. Foods. 2022;11(15):2342. https://doi.org/10.3390/foods11152342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Vega-Gálvez A, Uribe E, Perez M, Tabilo-Munizaga G, Vergara J, Garcia-Segovia P, Lara E, Di Scala K. Effect of high hydrostatic pressure pretreatment on drying kinetics, antioxidant activity, firmness and microstructure of Aloe vera (Aloe barbadensis Miller) gel. LWT. 2011;44(2):384–91. https://doi.org/10.1016/j.lwt.2010.08.004.

    Article  CAS  Google Scholar 

  133. Swami Hulle NR, Kaushik N, Rao PS. Effect of high-pressure processing on rheological properties, pectinmethylesterase activity and microbiological characteristics of Aloe vera (Aloe barbadensis Miller) juice. Int J Food Prop. 2015;18(7):1597–612. https://doi.org/10.1080/10942912.2014.923907.

    Article  CAS  Google Scholar 

  134. Jermann C, Koutchma T, Margas E, Leadley C, Ros-Polski V. Mapping trends in novel and emerging food processing technologies around the world. Innov Food Sci Emerg Technol. 2015;31:14–27. https://doi.org/10.1016/j.ifset.2015.06.007.

    Article  Google Scholar 

  135. Yan LG, He L, Xi J. High intensity pulsed electric field as an innovative technique for extraction of bioactive compounds—a review. Crit Rev Food Sci Nutr. 2017;57(13):2877–88. https://doi.org/10.1080/10408398.2015.1077193.

    Article  CAS  PubMed  Google Scholar 

  136. Salehi F. Physico-chemical properties of fruit and vegetable juices as affected by pulsed electric field: a review. Int J Food Prop. 2020;23(1):1036–50. https://doi.org/10.1080/10942912.2020.1775250.

    Article  CAS  Google Scholar 

  137. Jin TZ, Yu Y, Gurtler JB. Effects of pulsed electric field processing on microbial survival, quality change and nutritional characteristics of blueberries. LWT. 2017;77:517–24. https://doi.org/10.1016/j.lwt.2016.12.009.

    Article  CAS  Google Scholar 

  138. Manzoor MF, Zeng XA, Ahmad N, Ahmed Z, Rehman A, Aadil RM, Roobab U, Siddique R, Rahaman A. Effect of pulsed electric field and thermal treatments on the bioactive compounds, enzymes, microbial, and physical stability of almond milk during storage. J Food Process Preser. 2020;44(7):e14541. https://doi.org/10.1111/jfpp.14541.

    Article  CAS  Google Scholar 

  139. Lee H, Choi S, Kim E, Kim YN, Lee J, Lee DU. Effects of pulsed electric field and thermal treatments on microbial reduction, volatile composition, and sensory properties of orange juice, and their characterization by a principal component analysis. Appl Sci. 2020;11(1):186. https://doi.org/10.3390/app11010186.

    Article  CAS  Google Scholar 

  140. Alam MR, Lyng JG, Frontuto D, Marra F, Cinquanta L. Effect of pulsed electric field pretreatment on drying kinetics, color, and texture of parsnip and carrot. J Food Sci. 2018;83(8):2159–66. https://doi.org/10.1111/1750-3841.14216.

    Article  CAS  PubMed  Google Scholar 

  141. Liu C, Sun Y, Mao Q, Guo X, Li P, Liu Y, Xu N. Characteristics and antitumor activity of Morchella esculenta polysaccharide extracted by pulsed electric field. Int J Mol Sci. 2016;17(6):986. https://doi.org/10.3390/ijms17060986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Leong SY, Richter LK, Knorr D, Oey I. Feasibility of using pulsed electric field processing to inactivate enzymes and reduce the cutting force of carrot (Daucus carota var. Nantes). Innov Food Sci Emerg Technol. 2014;26:159–67. https://doi.org/10.1016/j.ifset.2014.04.004.

    Article  CAS  Google Scholar 

  143. Won YC, Min SC, Lee DU. Accelerated drying and improved color properties of red pepper by pretreatment of pulsed electric fields. Dry Technol. 2015;33(8):926–32. https://doi.org/10.1080/07373937.2014.999371.

    Article  Google Scholar 

  144. Usaga J, Worobo RW. Microbial safety and quality evaluation of UV-treated, cold-pressed colored and turbid juices and beverages. J Food Prot. 2018;81(9):1549–56. https://doi.org/10.4315/0362-028X.JFP-18-085.

    Article  CAS  PubMed  Google Scholar 

  145. Yemmireddy V, Adhikari A, Moreira J. Effect of ultraviolet light treatment on microbiological safety and quality of fresh produce: an overview. Front Nutr. 2022;9:871243. https://doi.org/10.3389/fnut.2022.871243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Singh H, Bhardwaj SK, Khatri M, Kim KH, Bhardwaj N. UVC radiation for food safety: an emerging technology for the microbial disinfection of food products. Chem Eng J. 2021;417:128084. https://doi.org/10.1016/j.cej.2020.128084.

    Article  CAS  Google Scholar 

  147. Beristaín-Bauza S, Martínez-Niño A, Ramírez-González AP, Ávila-Sosa R, Ruíz-Espinosa H, Ruiz-López II, Ochoa-Velasco CE. Inhibition of Salmonella Typhimurium growth in coconut (Cocos nucifera L.) water by hurdle technology. Food Control. 2018;92:312–8. https://doi.org/10.1016/j.foodcont.2018.05.010.

    Article  CAS  Google Scholar 

  148. Mukhopadhyay S, Ukuku DO, Juneja V, Fan XJFC. Effects of UV-C treatment on inactivation of Salmonella enterica and Escherichia coli O157: H7 on grape tomato surface and stem scars, microbial loads, and quality. Food Control. 2014;44:110–7. https://doi.org/10.1016/j.foodcont.2014.03.027.

    Article  CAS  Google Scholar 

  149. Martínez-Hernández GB, Navarro-Rico J, Gómez PA, Otón M, Artés F, Artés-Hernández F. Combined sustainable sanitising treatments to reduce Escherichia coli and Salmonella Enteritidis growth on fresh-cut kailan-hybrid broccoli. Food Control. 2015;47:312–7. https://doi.org/10.1016/j.foodcont.2014.07.029.

    Article  CAS  Google Scholar 

  150. Sethi S, Joshi A, Arora B. UV treatment of fresh fruits and vegetables. In: Siddiqui MW, editor. Postharvest disinfection of fruits and vegetables. Cambridge: Academic Press; 2018. p. 137–57. https://doi.org/10.1016/B978-0-12-812698-1.00007-8.

    Chapter  Google Scholar 

  151. Corrêa TQ, Blanco KC, Garcia ÉB, Perez SML, Chianfrone DJ, Morais VS, Bagnato VS. Effects of ultraviolet light and curcumin-mediated photodynamic inactivation on microbiological food safety: a study in meat and fruit. Photodiagnosis Photodyn Ther. 2020;30: 101678. https://doi.org/10.1016/j.pdpdt.2020.101678.

    Article  CAS  PubMed  Google Scholar 

  152. Deng LZ, Mujumdar AS, Pan Z, Vidyarthi SK, Xu J, Zielinska M, Xiao HW. Emerging chemical and physical disinfection technologies of fruits and vegetables: a comprehensive review. Crit Rev Food Sci Nutr. 2020;60(15):2481–508. https://doi.org/10.1080/10408398.2019.1649633.

    Article  CAS  PubMed  Google Scholar 

  153. Lee H, Kim JE, Chung MS, Min SC. Cold plasma treatment for the microbiological safety of cabbage, lettuce, and dried figs. Food Microbiol. 2015;51:74–80. https://doi.org/10.1016/j.fm.2015.05.004.

    Article  CAS  PubMed  Google Scholar 

  154. Zhang C, Zhang Y, Zhao Z, Liu W, Chen Y, Yang G, Xia X, Cao Y. The application of slightly acidic electrolyzed water in pea sprout production to ensure food safety, biological and nutritional quality of the sprout. Food Control. 2019;104:83–90. https://doi.org/10.1016/j.foodcont.2019.04.029.

    Article  CAS  Google Scholar 

  155. Al-Khuseibi MK, Sablani SS, Perera CO. Comparison of water blanching and high hydrostatic pressure effects on drying kinetics and quality of potato. Dry Technol. 2005;23(12):2449–61. https://doi.org/10.1080/07373930500340734.

    Article  Google Scholar 

  156. Zhou CL, Liu W, Zhao J, Yuan C, Song Y, Chen D, Ni YY, Li QH. The effect of high hydrostatic pressure on the microbiological quality and physical–chemical characteristics of Pumpkin (Cucurbita maxima Duch.) during refrigerated storage. Innov Food Sci Emerg Technol. 2014;21:24–34. https://doi.org/10.1016/j.ifset.2013.11.002.

    Article  CAS  Google Scholar 

  157. Bao R, Fan A, Hu X, Liao X, Chen F. Effects of high-pressure processing on the quality of pickled radish during refrigerated storage. Innov Food Sci Emerg Technol. 2016;38:206–12. https://doi.org/10.1016/j.ifset.2016.10.009.

    Article  CAS  Google Scholar 

  158. Verma D, Kaushik N, Rao PS. Application of high hydrostatic pressure as a pretreatment for osmotic dehydration of banana slices (Musa cavendishii) finish-dried by dehumidified air drying. Food Bioprocess Technol. 2014;7:1281–97. https://doi.org/10.1007/s11947-013-1124-6.

    Article  CAS  Google Scholar 

  159. Amami E, Khezami L, Vorobiev E, Kechaou N. Effect of pulsed electric field and osmotic dehydration pretreatment on the convective drying of carrot tissue. Dry Technol. 2008;26(2):231–8. https://doi.org/10.1080/07373930701537294.

    Article  CAS  Google Scholar 

  160. Shynkaryk MV, Lebovka NI, Vorobiev EJDT. Pulsed electric fields and temperature effects on drying and rehydration of red beetroots. Dry Technol. 2008;26(6):695–704. https://doi.org/10.1080/07373930802046260.

    Article  Google Scholar 

  161. Aguiló-Aguayo I, Charles F, Renard CM, Page D, Carlin F. Pulsed light effects on surface decontamination, physical qualities and nutritional composition of tomato fruit. Postharvest Biol Technol. 2013;86:29–36. https://doi.org/10.1016/j.postharvbio.2013.06.011.

    Article  CAS  Google Scholar 

  162. Manzocco L, Da Pieve S, Bertolini A, Bartolomeoli I, Maifreni M, Vianello A, Nicoli MC. Surface decontamination of fresh-cut apple by UV-C light exposure: effects on structure, colour and sensory properties. Postharvest Biol Technol. 2011;61(2–3):165–71. https://doi.org/10.1016/j.postharvbio.2011.03.003.

    Article  CAS  Google Scholar 

  163. Santo D, Graça A, Nunes C, Quintas C. Survival and growth of Cronobacter sakazakii on fresh-cut fruit and the effect of UV-C illumination and electrolyzed water in the reduction of its population. Int J Food Microbiol. 2016;231:10–5. https://doi.org/10.1016/j.ijfoodmicro.2016.04.023.

    Article  CAS  PubMed  Google Scholar 

  164. Wang CY, Chen CT, Wang SY. Changes of flavonoid content and antioxidant capacity in blueberries after illumination with UV-C. Food Chem. 2009;117(3):426–31. https://doi.org/10.1016/j.foodchem.2009.04.037.

    Article  CAS  Google Scholar 

  165. Barka EA. Protective enzymes against reactive oxygen species during ripening of tomato (Lycopersicon esculentum) fruits in response to low amounts of UV-C. Funct Plant Biol. 2001;28(8):785–91. https://doi.org/10.1071/PP00070.

    Article  CAS  Google Scholar 

  166. Sun X, Baldwin E, Bai J. Applications of gaseous chlorine dioxide on postharvest handling and storage of fruits and vegetables—a review. Food Control. 2019;95:18–26. https://doi.org/10.1016/j.foodcont.2018.07.044.

    Article  CAS  Google Scholar 

  167. Malka SK, Park MH. Fresh produce safety and quality: chlorine dioxide’s role. Front Plant Sci. 2022;12:775629. https://doi.org/10.3389/fpls.2021.775629.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Saikumar A, Singh A, Kaur K, Kumar N, Sharma S, Dobhal A, Kumar S. Numerical optimization of hypochlorous acid (HOCl) treatment parameters and its effect on postharvest quality characteristics of tomatoes. J Agric Food Res. 2023;14:100762. https://doi.org/10.1016/j.jafr.2023.100762.

    Article  CAS  Google Scholar 

  169. Nowosad K, Sujka M, Pankiewicz U, Kowalski R. The application of PEF technology in food processing and human nutrition. J Food Sci Technol. 2021;58:397–411. https://doi.org/10.1007/s13197-020-04512-4.

    Article  PubMed  Google Scholar 

  170. Li Z, Yang H, Fang W, Huang X, Shi J, Zou X. Effects of variety and pulsed electric field on the quality of fresh-cut apples. Agriculture. 2023;13(5):929. https://doi.org/10.3390/agriculture13050929.

    Article  CAS  Google Scholar 

  171. Palumbo M, Attolico G, Capozzi V, Cozzolino R, Corvino A, de Chiara ML, Pace B, Pelosi S, Ricci I, Romaniello R, Cefola M. Emerging postharvest technologies to enhance the shelf-life of fruit and vegetables: an overview. Foods. 2022;11(23):3925. https://doi.org/10.3390/foods11233925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors highly acknowledge the Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management and Graphic Era (Deemed to be University) for providing necessary facilities.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AS: conceptualization, data curation, methodology, validation, writing original draft. AS: conceptualization, data curation, methodology. AD: reviewing, editing, and draft preparation. SA: methodology, reviewing, editing, and draft preparation. PMJ: reviewing, editing. LSB: data curation, writing, reviewing, and editing. SK: reviewing, editing, and validation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sanjay Kumar.

Ethics declarations

Conflict of interest

All the authors of this manuscript declare no conflicts of interest.

Ethical approval

Not applicable.

Consent for publication

All authors agree to publish the manuscript in this journal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saikumar, A., Singh, A., Dobhal, A. et al. A review on the impact of physical, chemical, and novel treatments on the quality and microbial safety of fruits and vegetables. Syst Microbiol and Biomanuf 4, 575–597 (2024). https://doi.org/10.1007/s43393-023-00217-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-023-00217-9

Keywords

Navigation