Skip to main content
Log in

Postharvest Quality of Strawberry Fruit (Fragaria x Ananassa Duch cv. Albion) as Affected by Ozone Washing: Fungal Spoilage, Mechanical Properties, and Structure

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Storage life of strawberry fruit is limited due to its high softening rate and susceptibility to fungal attack. Thus, it is of interest to develop and improve preservation techniques to reduce postharvest losses. The aim of this study was to evaluate the effect of ozonized water washing (maximum concentration of 3.5 mg L−1; 5–15 min) on fungal spoilage, water loss, mechanical properties, and structure of strawberries (cv. Albion) harvested in different years and stored at 5 °C. The effect of ozone treatment on decontamination and weight loss was dose-dependent. Ozonization for 5 min significantly reduced fungal incidence (~ 22–25% lesser than control) and weight loss of strawberries throughout storage. High doses (10 or 15 min) did not reduce significantly fungal growth in relation to control, although weight loss in fruit treated for 15 min was higher than control. In both harvest years studied, cold storage provoked a diminution in deformability modulus and an increase in deformation but a significant effect of treatment was not observed. These changes were correlated with alteration of cell walls and turgor loss. Otherwise, cuticular membrane of strawberries treated for 5 min was observed thicker and more electron dense than in fruit ozonized for 15 min or control. It could partially explain the lower moisture loss observed in 5-min treated fruit. Results showed that ozonized water washing for 5 min can be an alternative strategy for extending postharvest strawberry shelf-life by decreasing fungal decay and water loss along cold storage, without affecting mechanical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aday, M., Büyükcan, M. B., Temizkan, R., & Caner, C. (2014). Role of ozone concentrations and exposure times in extending shelf life of strawberry. Ozone: Science & Engineering, 36(1), 43–56.

    Article  CAS  Google Scholar 

  • Aguilera, J. M., & Stanley, D. W. (1999). Microstructural principles of food processing and engineering. Maryland: An Aspen Publication (Chapter 1).

    Google Scholar 

  • Alexandre, E. M. C., Santos-Pedro, D. M., Brandão, T. R. S., & Silva, C. L. M. (2011). Influence of aqueous ozone, blanching and combined treatments on microbial load of red bell peppers, strawberries and watercress. Journal of Food Engineering, 105(2), 277–282.

    Article  CAS  Google Scholar 

  • Alexandre, E. M. C., Brandão, T. R. S., & Silva, C. L. M. (2012). Efficacy of non-thermal technologies and sanitizer solutions on microbial load reduction and quality retention of strawberries. Journal of Food Engineering, 108(3), 417–426.

    Article  CAS  Google Scholar 

  • Alzamora, S. M., Castro, M. A., Nieto, A. B., Vidales, S. L., Salvatori, D. M., & López-Malo, A. (2000). The role of tissue microstructure in the textural characteristics of minimally processed fruit. In S. M. Alzamora & M. S. Tapia (Eds.), Minimally processed fruit and vegetables (pp. 153–171). Maryland: Aspen Publishers Inc.

    Google Scholar 

  • Alzamora, S. M., Viollaz, P. E., Martínez, V. Y., Nieto, A. B., & Salvatori, D. M. (2008). Exploring the linear viscoelastic properties structure relationship in processed fruit tissues. In G. E. Gutiérrez-López, G. V. Barbosa-Cánovas, J. Welti-Chanes, & E. Parada-Arias (Eds.), Food engineering: Integrated approaches (pp. 133–214). New York: Springer.

    Google Scholar 

  • Bader, H., & Hoigné, J. (1982). Determination of ozone in water by the indigo method: A submitted standard method. Ozone: Science & Engineering: The Journal of the International Ozone Association, 4(4), 169–176.

    Article  CAS  Google Scholar 

  • Baka, M., Mercier, J., Corcuff, R., Castaigne, F., & Arul, J. (1999). Photochemical treatment to improve storability of fresh strawberries. Journal of Food Science, 64(6), 1068–1072.

    Article  CAS  Google Scholar 

  • Barkai-Golan, R. (2001). III. Soft fruit and berries. Postharvest diseases of fruit and vegetables. Development and control (pp. 310–320)., Amsterdam: Elsevier.

  • Bialka, K., & Demirci, A. (2007). Efficacy of aqueous ozone for the decontamination of Escherichia coli O157:H7 and Salmonella on raspberries and strawberries. Journal of Food Protection, 70(5), 1088–1092.

    Article  CAS  PubMed  Google Scholar 

  • Cayuela, J. A., Vázquez, A., Pérez, A. G., & García, J. M. (2009). Control of table grapes postharvest decay by ozone treatment and resveratrol induction. Food Science and Technology International, 15(5), 495–502.

    Article  CAS  Google Scholar 

  • Duarte-Molina, F., Gómez, P. L., Castro, M. A., & Alzamora, S. M. (2016). Storage quality of strawberry fruit treated by pulsed light: Fungal decay, water loss and mechanical properties. Innovative Food Science and Emerging Technologies, 34, 267–274.

    Article  CAS  Google Scholar 

  • García-Loredo, A., Guerrero, S., & Alzamora, S. M. (2015). Inactivation kinetics and growth dynamics during cold storage of Escherichia coli ATCC 11229, Listeria innocua ATCC 33090 and Saccharomyces cerevisiae KE162 in peach juice using aqueous ozone. Innovative Food Science and Emerging Technologies, 29, 271–279.

    Article  CAS  Google Scholar 

  • Gechev, T. S., Van Breusegem, F., Stone, J. M., Denev, I., & Laloi, C. (2006). Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bio Essays, 28, 1–11.

    Google Scholar 

  • Jackman, R., & Stanley, D. (1995). Perspectives in the textural evaluation of plant foods. Trends in Food Science and Technology, 6(6), 187–194.

    Article  CAS  Google Scholar 

  • Karaca, H., & Velioglu, Y. S. (2007). Ozone applications in fruit and vegetable processing. Food Reviews International, 23(1), 91–106.

    Article  CAS  Google Scholar 

  • Lara, I., Belge, B., & Goulao, L. (2014). The fruit cuticle as a modulator of postharvest quality. Postharvest Biology and Technology, 87, 103–112.

    Article  CAS  Google Scholar 

  • Maury, C., Madieta, E., Le Moigne, M., Mehinagic, E., Siret, R., & Jourjon, F. (2009). Development of a mechanical texture test to evaluate the ripening process of cabernet franc grapes. Journal of Texture Studies, 40(5), 511–535.

    Article  Google Scholar 

  • Ong, M. K., Ali, A., Alderson, P. G., & Forney, C. F. (2014). Effect of different concentrations of ozone on physiological changes associated to gas exchange, fruit ripening, fruit surface quality and defence-related enzymes levels in papaya fruit during ambient storage. Scientae Horticulturae, 179, 163–169.

    Article  CAS  Google Scholar 

  • Pangloli, P., & Hung, Y. (2013). Reducing microbiological safety risk on blueberries through innovative washing technologies. Food Control, 32(2), 621–625.

    Article  CAS  Google Scholar 

  • Pérez, A. G., Sanz, C., Ríos, J. J., Olías, R., & Olías, J. M. (1999). Effects of ozone treatment on postharvest strawberry quality. Journal of Agriculture and Food Chemistry, 47(4), 1652–1656.

    Article  Google Scholar 

  • Perry, J. J., & Yousef, A. E. (2011). Decontamination of raw foods using ozone-based sanitization techniques. Annual Review of Food Science and Technology, 2(1), 281–298.

    Article  CAS  PubMed  Google Scholar 

  • Posé, S., Kirby, A. R., Mercado, J. A., Morris, V. J., & Quesada, M. A. (2012). Structural characterization of cell wall pectin fractions in ripe strawberry fruit using AFM. Carbohydrate Polymers, 88(3), 882–890.

    Article  CAS  Google Scholar 

  • Prusky, D., Alkan, N., Miyara, I., Barad, S., Davidzon, M., Kobiler, I., Brown-Horowitz, S., Lichter, A., Sherman, A., & Flu, R. (2010). Mechanisms modulating postharvest pathogen colonization of decaying fruit. In D. Prusky & M. L. Gullino (Eds.), Postharvest Pathology (pp. 43–55). New York: Springer Science+Business Media B.V.

    Google Scholar 

  • Quinn, G., & Keough, M. (2002). Experimental design and data analysis for biologists. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Rolle, L., Siret, R., Río Segade, S., Maury, C., Gerbi, V., & Jourjon, F. (2012). Instrumental texture analysis parameters as markers of table-grape and wine grape quality: A review. American Journal of Enology and Viticulture, 63(1), 11–28.

    Article  Google Scholar 

  • Romanazzi, G., Smilanick, J. L., Feliziani, E., & Droby, S. (2016). Integrated management of postharvest gray mold on fruit crops. Postharvest Biology and Technology, 113, 69–76.

    Article  CAS  Google Scholar 

  • Šamec, S., Maretic’, M., Lugaric’, I., Mešic’, A., Salopek-Sondi, B., & Duralija, B. (2016). Assessment of the differences in the physical, chemical and phytochemical properties of four strawberry cultivars using principal component analysis. Food Chemistry, 194, 828–834.

    Article  CAS  PubMed  Google Scholar 

  • Sandermann Jr., H., Ernst, D., Heller, W., & Langebartels, C. (1998). Ozone: An abiotic elicitor of plant defence reactions. Trends in Plant Science Reviews, 3(2), 47–50.

    Article  Google Scholar 

  • Waldron, K. W., Smith, A. C., Parr, A. J., Ng, A., & Parker, M. L. (1997). New approaches to understanding and controlling cell separation in relation to fruit and vegetable texture. Trends in Food Science and Technology, 8(7), 213–221.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the Universidad de Buenos Aires (UBACYT 2014-7 Project 20020130100388BA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) of Argentina and from Banco Interamericano de Desarrollo (BID).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella M. Alzamora.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contigiani, E.V., Jaramillo-Sánchez, G., Castro, M.A. et al. Postharvest Quality of Strawberry Fruit (Fragaria x Ananassa Duch cv. Albion) as Affected by Ozone Washing: Fungal Spoilage, Mechanical Properties, and Structure. Food Bioprocess Technol 11, 1639–1650 (2018). https://doi.org/10.1007/s11947-018-2127-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-018-2127-0

Keywords

Navigation