Skip to main content

Advertisement

Log in

Antioxidant and biotechnological potential of Pediococcus pentosaceus RZ01 and Lacticaseibacillus paracasei RZ02 in a millet-based fermented substrate

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Lactobacillus and Bifidobacterium are the most known genera of the therapeutic niche of organisms that have developed various defense mechanisms through their antioxidative activity which help mitigate the abnormality caused by reactive oxygen species to cell components. Nevertheless, for these probiotic organisms to exert their beneficial effects, the need to enhance functionality and protect bacterial cells in the gastrointestinal tract requires an efficient method for a better selection of favorable fermentation conditions with a sufficient yield of desired property or product. Here we reported the potential and antioxidant activities of isolated probiotic strains, with a considerable viable cell count between 108 and 109 CFU/mL, as the pH of both fermented millet substrate decreased from 6.13 to 3.62 at 35 °C within 14 h using a statistical optimization approach. The identified strains Pediococcus pentosaceus RZ01 and Lacticaseibacillus paracasei RZ02 alongside the reference strain had an overall gastrointestinal tolerance of 60% under simulated conditions, with Pediococcus pentosaceus RZ01 showing the highest bile salt survival rate (123.07%). Lactobacillus paracasei RZ02 indicates a high hydrophobicity potential (86.48%), suggesting a better adhesion ability to the gastrointestinal tract. Concurrently, Pediococcus pentosaceus RZ01 and Lactobacillus paracasei RZ02 fermented substrate had 39.69 and 44.51% of 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, with the release of bioactive compounds of health importance. These provide important references for formulating novel probiotic fermented cereal product, understanding of probiotic-prebiotic relationship, as well as pave way for biotechnological application of identified and related probiotics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Abbreviations

LAB:

Lactic acid bacteria

FAO/WHO:

The Food and Agriculture Organization of the United Nations/World Health Organization

PBDB:

Probiotic databases

PROBIO:

A database of probiotics functions and lineages

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

EDTA:

Ethylenediaminetetraacetic acid

TAE:

Tris-acetate-EDTA

PBS:

Phosphate buffered saline

MRS:

De Man, Rogosa & Sharpe

Runs,:

Experimental variables

GIT:

Gastrointestinal tract

LAB:

Lactic acid bacteria

16S rRNA:

16S ribosomal RNA

PCR:

Polymerase chain reaction

HPLC:

High-performance liquid chromatography

Trxs:

Thioredoxin-thioredoxin reductase system

Grxs:

Glutathione-glutaredoxin

O2 ,:

Superioxides

H2O2 :

Hydrogen peroxide

GC–MS:

Gas chromatography–mass spectrometry

RSA:

Radical scavenging activity

BLAST:

Basic local alignment search tool

Ped. pentosaceus RZ01:

Pediococcus pentosaceus RZ01

Lb. paracasei RZ02:

Lacticaseibacillus paracasei RZ02

L. lactis NZ9000:

Lactococcus lactis NZ9000

FOS:

Fructooligosaccharide

GOS:

Galactooligosaccharide

References

  1. Graf D, Di Cagno R, Fåk F, Flint HJ, Nyman M, Saarela M, Watzl B. Contribution of diet to the composition of the human gut microbiota. Microb Ecol Health Dis. 2015;26(1):26164.

    PubMed  Google Scholar 

  2. Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol. 2017;15(10):630–8.

    Article  CAS  PubMed  Google Scholar 

  3. Cohen PA. Probiotic safety—no guarantees. JAMA Intern Med. 2018;178(12):1577–8. https://doi.org/10.1001/jamainternmed.2018.5403.

    Article  PubMed  Google Scholar 

  4. Islam SU. Clinical uses of probiotics. Medicine. 2016. https://doi.org/10.1097/MD.0000000000002658.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sanders ME. Probiotics and microbiota composition. BMC Med. 2016;14(1):82. https://doi.org/10.1186/s12916-016-0629-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. O’Toole PW, Marchesi JR, Hill C. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat Microbiol. 2017;2(5):17057. https://doi.org/10.1038/nmicrobiol.2017.57.

    Article  CAS  PubMed  Google Scholar 

  7. Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A. Mechanisms of action of probiotics. Adv Nutr. 2019;10(suppl_):S49–66. https://doi.org/10.1093/advances/nmy063.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ho VTT, Turner MS. Future probiotic foods. Microbiol Aust. 2020;41(2):58–60. https://doi.org/10.1071/MA20017.

    Article  Google Scholar 

  9. Tamang JP, Cotter PD, Endo A, Han NS, Kort R, Liu SQ, Mayo B, Westerik N, Hutkins R. Fermented foods in a global age: east meets west. Compr Rev Food Sci Food Saf. 2020;19(1):184–217. https://doi.org/10.1111/1541-4337.12520.

    Article  PubMed  Google Scholar 

  10. Xiang H, Sun-Waterhouse D, Waterhouse GIN, Cui C, Ruan Z. Fermentation-enabled wellness foods: a fresh perspective. Food Sci Hum Wellness. 2019;8(3):203–43. https://doi.org/10.1016/j.fshw.2019.08.003.

    Article  Google Scholar 

  11. Gulcin İ. Antioxidants and antioxidant methods: an updated overview. Arch Toxicol. 2020;94(3):651–715. https://doi.org/10.1007/s00204-020-02689-3.

    Article  CAS  PubMed  Google Scholar 

  12. Rezac S, Kok CR, Heermann M, Hutkins R. Fermented foods as a dietary source of live organisms. Front Microbiol. 2018;9:1785. https://doi.org/10.3389/fmicb.2018.01785.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ismaeel A, Holmes M, Papoutsi E, Panton L, Koutakis P. Resistance training, antioxidant status, and antioxidant supplementation. Int J Sport Nutr Exerc Metab. 2019;29(5):539–47. https://doi.org/10.1123/ijsnem.2018-0339.

    Article  CAS  PubMed  Google Scholar 

  14. Kumar A, Hussain SA, Prasad W, Singh AK, Singh RRB. Effect of oxygen tolerant probiotic strain, stabilizers and copper addition on the storage stability of Aloe vera supplemented synbiotic lassi. Futur Foods. 2021;3: 100021. https://doi.org/10.1016/j.fufo.2021.100021.

    Article  CAS  Google Scholar 

  15. Mishra V, Shah C, Mokashe N, Chavan R, Yadav H, Prajapati J. Probiotics as potential antioxidants: a systematic review. J Agric Food Chem. 2015;63(14):3615–26. https://doi.org/10.1021/jf506326t.

    Article  CAS  PubMed  Google Scholar 

  16. Peter SB, Qiao Z, Godspower HN, Boyi SA, Xu M, Zhang X, Yang T, Rao Z. Biotechnological innovations and therapeutic application of pediococcus and lactic acid bacteria: the next-generation microorganism. Front Bioeng Biotechnol. 2022. https://doi.org/10.3389/fbioe.2021.802031.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Castro-López C, García HS, Guadalupe Martínez-Ávila GC, González-Córdova AF, Vallejo-Cordoba B, Hernández-Mendoza A. Genomics-based approaches to identify and predict the health-promoting and safety activities of promising probiotic strains-a probiogenomics review. Trends Food Sci Technol. 2011;108:148–63. https://doi.org/10.1016/j.tifs.2020.12.017.

    Article  CAS  Google Scholar 

  18. Ventura M, Turroni F, van Sinderen D. Probiogenomics as a tool to obtain genetic insights into adaptation of probiotic bacteria to the human gut. Bioeng Bugs. 2012;3(2):73–9. https://doi.org/10.4161/bbug.18540.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tao L, Wang B, Zhong Y, Pow SH, Zeng X, Qin C, Zhang P, Chen S, He W, Tan Y, Liu H, Jiang Y, Chen W, Chen YZ. Database and bioinformatics studies of probiotics. J Agric Food Chem. 2017;65(35):7599–606. https://doi.org/10.1021/acs.jafc.7b01815.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao W, Liu Y, Latta M, Ma W, Wu Z, Chen P. Probiotics database: a potential source of fermented foods. Int J Food Prop. 2019;22(1):198–217. https://doi.org/10.1080/10942912.2019.1579737.

    Article  Google Scholar 

  21. Marcial-Coba MS, Knøchel S, Nielsen DS. Low-moisture food matrices as probiotic carriers. FEMS Microbiol Lett. 2019. https://doi.org/10.1093/femsle/fnz006.

    Article  PubMed  Google Scholar 

  22. Sarao LK, Arora M. Probiotics, prebiotics, and microencapsulation: a review. Crit Rev Food Sci Nutr. 2017;57(2):344–71. https://doi.org/10.1080/10408398.2014.887055.

    Article  CAS  PubMed  Google Scholar 

  23. Fijan S. Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health. 2014;11(5):4745–67. https://doi.org/10.3390/ijerph110504745.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Davani-Davari D, et al. Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods (Basel, Switzerland). 2019;8(3):92. https://doi.org/10.3390/foods8030092.

    Article  CAS  PubMed  Google Scholar 

  25. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G. Expert consensus document: the international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491–502. https://doi.org/10.1038/nrgastro.2017.75.

    Article  PubMed  Google Scholar 

  26. Markowiak P, Śliżewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 2017;9(9):1021. https://doi.org/10.3390/nu9091021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Katina K, Arendt E, Liukkonen K-H, Autio K, Flander L, Poutanen K. Potential of sourdough for healthier cereal products. Trends Food Sci Technol. 2005;16(1):104–12. https://doi.org/10.1016/j.tifs.2004.03.008.

    Article  CAS  Google Scholar 

  28. Leboš-Pavunc A, Penava L, Ranilović J, Novak J, Banić M, Butorac K, Petrović E, Mihaljević-Herman V, Bendelja K, Savić-Mlakar A, Durgo K, Kos B, Šušković J, g,. Influence of dehydrated wheat/rice cereal matrices on probiotic activity of bifidobacterium animalis ssp. lactis BB-12®(§). Food Technol Biotechnol. 2019;57(2):147–58. https://doi.org/10.17113/ftb.57.02.19.6142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang SJ, Kim K-T, Kim TY, Paik H-D. Probiotic Properties and antioxidant activities of pediococcus pentosaceus SC28 and levilactobacillus brevis KU15151 in Fermented Black Gamju. Foods (Basel, Switzerland). 2020;9(9):1154. https://doi.org/10.3390/foods9091154.

    Article  CAS  PubMed  Google Scholar 

  30. Son SH, Yang SJ, Jeon HL, Yu HS, Lee NK, Park YS, Paik HD. Antioxidant and immunostimulatory effect of potential probiotic Lactobacillus paraplantarum SC61 isolated from Korean traditional fermented food, jangajji. Microb Pathog. 2018;125:486–92. https://doi.org/10.1016/j.micpath.2018.10.018.

    Article  CAS  PubMed  Google Scholar 

  31. Diguță CF, Nitoi GD, Matei F, Luță G, Cornea CP. The biotechnological potential of pediococcus spp. Isolated from kombucha microbial consortium. Foods (Basel, Switzerland). 2020;9(12):1780. https://doi.org/10.3390/foods9121780.

    Article  CAS  PubMed  Google Scholar 

  32. Gonelimali FD, Lin J, Miao W, Xuan J, Charles F, Chen M, Hatab SR. Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front Microbiol. 2018. https://doi.org/10.3389/fmicb.2018.01639.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kaushik JK, Kumar A, Duary RK, Mohanty AK, Grover S, Batish VK. Functional and probiotic attributes of an indigenous isolate of Lactobacillus plantarum. PLoS ONE. 2009;4(12):e8099. https://doi.org/10.1371/journal.pone.0008099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181(4617):1199–200. https://doi.org/10.1038/1811199a0.

    Article  CAS  Google Scholar 

  35. Ferrando V, Quiberoni A, Reinheimer J, Suárez V. Functional properties of Lactobacillus plantarum strains: a study in vitro of heat stress influence. Food Microbiol. 2016;54:154–61. https://doi.org/10.1016/j.fm.2015.10.003.

    Article  CAS  Google Scholar 

  36. Schachtsiek M, Hammes WP, Hertel C. Characterization of Lactobacillus coryniformis DSM 20001T surface protein Cpf mediating coaggregation with and aggregation among pathogens. Appl Environ Microbiol. 2004;70(12):7078–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ebner S, Smug LN, Kneifel W, Salminen SJ, Sanders ME. Probiotics in dietary guidelines and clinical recommendations outside the European Union. World J Gastroenterol. 2014;20(43):16095–100. https://doi.org/10.3748/wjg.v20.i43.16095.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ranadheera CS, Evans CA, Adams MC, Baines SK. In vitro analysis of gastrointestinal tolerance and intestinal cell adhesion of probiotics in goat’s milk ice cream and yogurt. Food Res Int. 2012;49(2):619–25. https://doi.org/10.1016/j.foodres.2012.09.007.

    Article  CAS  Google Scholar 

  39. Osmanagaoglu O, Kiran F, Yb cl F, Gursel I. Immunomodulatory function and in vivo properties of pediococcus pentosaceus OZF, a promising probiotic strain. Ann Microbiol. 2012;63:1311–8.

    Article  Google Scholar 

  40. Vidhyasagar V, Jeevaratnam K. Evaluation of pediococcus pentosaceus strains isolated from idly batter for probiotic properties in vitro. J Funct Foods. 2013;5(1):235–43. https://doi.org/10.1016/j.jff.2012.10.012.

    Article  CAS  Google Scholar 

  41. Osmanagaoglu O, Kiran F, Ataoglu H. Evaluation of in vitro probiotic potential of pediococcus pentosaceus OZF Isolated from human breast milk. Probiotics Antimicrob Proteins. 2010;2(3):162–174m. https://doi.org/10.1007/s12602-010-9050-7.

    Article  PubMed  Google Scholar 

  42. Yang SJ, Kim K-T, Kim TY, Paik H-D. Probiotic properties and antioxidant activities of Pediococcus pentosaceus SC28 and Levilactobacillus brevis KU15151 in fermented black gamju. Foods. 2020;9(9):1154. https://doi.org/10.3390/foods9091154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Begley M, Hill C, Gahan CGM. Bile salt hydrolase activity in probiotics. Appl Environ Microbiol. 2006;72(3):1729–38. https://doi.org/10.1128/AEM.72.3.1729-1738.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S, Gómez-Llorente C, Gil A. Probiotic mechanisms of action. Ann Nutr Metab. 2012;61(2):160–74. https://doi.org/10.1159/000342079.

    Article  CAS  PubMed  Google Scholar 

  45. Ruiz L, Margolles A, Sánchez B. Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front Microbiol. 2013;4:396. https://doi.org/10.3389/fmicb.2013.00396.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Konieczna C, Słodziński M, Schmidt MT. Exopolysaccharides produced by Lactobacillus rhamnosus KL 53A and lactobacillus casei fyos affect their adhesion to enterocytes. Pol J Microbiol. 2018;67(3):273–81. https://doi.org/10.21307/pjm-2018-032.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Han Q, Kong B, Chen Q, Sun F, Zhang H. In vitro comparison of probiotic properties of lactic acid bacteria isolated from harbin dry sausages and selected probiotics. J Funct Foods. 2017;32:391–400. https://doi.org/10.1016/j.jff.2017.03.020.

    Article  CAS  Google Scholar 

  48. Lee KW, Shim JM, Park S-K, Heo H-J, Kim H-J, Ham K-S, Kim JH. Isolation of lactic acid bacteria with probiotic potentials from kimchi, traditional Korean fermented vegetable. LWT–Food Sci Technol. 2016;71:130–7. https://doi.org/10.1016/j.lwt.2016.03.029.

    Article  CAS  Google Scholar 

  49. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123(Pt 24):4195–200. https://doi.org/10.1242/jcs.023820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Robles-Vera I, Toral M, Romero M, Jiménez R, Sánchez M, Pérez-Vizcaíno F, Duarte, J. Antihypertensive effects of probiotics. Curr Hypertens Rep. 2017;19(4):26. https://doi.org/10.1007/s11906-017-0723-4.

    Article  CAS  PubMed  Google Scholar 

  51. Amaretti A, di Nunzio M, Pompei A, Raimondi S, Rossi M, Bordoni A. Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities. Appl Microbiol Biotechnol. 2013;97(2):809–17. https://doi.org/10.1007/s00253-012-4241-7.

    Article  CAS  PubMed  Google Scholar 

  52. Kang TS, Korber DR, Tanaka T. Influence of oxygen on NADH recycling and oxidative stress resistance systems in Lactobacillus panis PM1. AMB Express. 2013;3(1):10. https://doi.org/10.1186/2191-0855-3-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Derr AM, Faustoferri RC, Betzenhauser MJ, Gonzalez K, Marquis RE, Quivey RGJ. Mutation of the NADH oxidase gene (nox) reveals an overlap of the oxygen- and acid-mediated stress responses in Streptococcus mutans. Appl Environ Microbiol. 2012;78(4):1215–27. https://doi.org/10.1128/AEM.06890-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jänsch A, Freiding S, Behr J, Vogel RF. Contribution of the NADH-oxidase (Nox) to the aerobic life of Lactobacillus sanfranciscensis DSM20451T. Food Microbiol. 2011;28(1):29–37. https://doi.org/10.1016/j.fm.2010.08.001.

    Article  CAS  PubMed  Google Scholar 

  55. Tachon S, Chambellon E, Yvon M. Identification of a conserved sequence in flavoproteins essential for the correct conformation and activity of the NADH oxidase NoxE of Lactococcus lactis. J Bacteriol. 2011;193(12):3000–8. https://doi.org/10.1128/JB.01466-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang W, Ji X, Yuan C, Dai F, Zhu J, Sun M. A method for molecular analysis of catalase gene diversity in seawater. Indian J Microbiol. 2013;53(4):477–81. https://doi.org/10.1007/s12088-013-0404-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang Y, Li Y. Engineering the antioxidative properties of lactic acid bacteria for improving its robustness. Curr Opin Biotechnol. 2013;24(2):142–7. https://doi.org/10.1016/j.copbio.2012.08.013.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Key Research and Development Program of China (2021YFC2100900), the National Natural Science Foundation of China (32071470), and the Science and Technology Project of Xinjiang Production and Construction Corps (2019AB009).

Author information

Authors and Affiliations

Authors

Contributions

SBP and ZR: Conceptualization, Methodology, Software. SBP: Data curation, Writing- Original draft preparation. HNG, JOO: Visualization, Investigation. ZR, MX and XZ: Supervision. ZQ: Software, Validation. SBP: Writing- Reviewing and Editin.

Corresponding author

Correspondence to Zhiming Rao.

Ethics declarations

Conflict of interests

The authors have no competing interests to declare that are relevant to the content of this article.

Ethics approval and consent to participate

Not applicable.

Consent of publication

All authors have unreservedly granted their approval and consent for the submission of this manuscript, and subsequent publication in Systems Microbiology and Biomanufacturing.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 332 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peter, S.B., Qiao, Z., Godspower, H.N. et al. Antioxidant and biotechnological potential of Pediococcus pentosaceus RZ01 and Lacticaseibacillus paracasei RZ02 in a millet-based fermented substrate. Syst Microbiol and Biomanuf 3, 571–584 (2023). https://doi.org/10.1007/s43393-022-00126-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-022-00126-3

Keywords

Navigation