Skip to main content

Advertisement

Log in

Immunomodulatory function and in vivo properties of Pediococcus pentosaceus OZF, a promising probiotic strain

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Some of the important properties of probiotics are the ability to survive during gastrointestinal transit and to modulate the immune functions. The objectives of the reported study were to assess in vivo gastrointestinal survival of orally administered Pediococcus pentosaceus OZF using an animal model BALB/c mice, and to examine its effects on the immune response. Following oral administration to mice, the ability of Pediococcus pentosaceus OZF to pass and survive through the mouse gastrointestinal system was investigated by analyzing the recovery of the strain in fecal samples. Microbiological and polymerase chain reaction (PCR) methods proved that the strain OZF could overcome specific conditions in the gastrointestinal tract of mice and reach the intestine alive after ingestion. To observe the effect of oral administration on immune response, IL-6, IL-12 and IFN-γ were measured by ELISA, and the strain OZF was found to cause increases in IL-6 synthesis in regularly fed mice. However, stimulation was carried out with various concentrations of bacterial ssDNA and heat killed cells of Pediococcus pentosaceus OZF. The heat killed cells of the strain OZF were shown to produce IFN-γ independently from IL-12. On the other hand, a significant difference between control and experimental group was noticed when lipopolysaccharide, a TLR4 (toll like receptor) ligand, was used. Overall, Pediococcus pentosaceus OZF may be a valuable probiotic strain for therapeutic uses. Nevertheless, further studies on the mechanisms of immunomodulatory effect will allow for better clarification of the immune functions of this strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baken KA, Ezendam J, Gremmer ER (2006) Evaluation of immunomodulation by Lactobacillus casei Shirota: immune function, auto immunity and gene expression. Int J Food Microbiol 112:8–18

    Article  PubMed  CAS  Google Scholar 

  • Biswas SR, Purbita R, Johnson MC, Ray B (1991) Influence of growth conditions on the production of a bacteriocin, pediocin AcH, by Pediococcus acidilactici H. Appl Environ Microb 57(4):1265–1267

    CAS  Google Scholar 

  • Christensen HR, Frokiaer H, Pestka JJ (2002) Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J Immunol 168:171–178

    PubMed  CAS  Google Scholar 

  • Collins JK, Thornton K, Sullivan GO (1998) Selection of probiotic strains for human applications. Int Dairy J 8(5):487–490

    Article  Google Scholar 

  • Deshpande GC, Rao CS, Keil AD, Patole SK (2011) Evidence-based guidelines for use of probiotics in preterm neonates. BMC Med 9:92–98

    Article  PubMed  Google Scholar 

  • Duchaine C, Israel-Assayag E, Fournier M, Cormier Y (1996) Proinflammatory effect of Pediococcus pentosaceus, a bacterium used as preservative. Eur Respir J 9:2508–2512

    Article  PubMed  CAS  Google Scholar 

  • Edwards U, Rogall T, Blockerl H, Emde M, Bottger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17(19):7843–7853

    Article  PubMed  CAS  Google Scholar 

  • Erikci E, Gursel M, Gursel I (2011) Differential immune activation following encapsulation of immunostimulatory CpG oligodeoxynucleotide in nanoliposomes. Biomaterials 32:1715–1723

    Article  PubMed  CAS  Google Scholar 

  • Foligne B, Dewulf J, Breton J, Claisse O, Lonvaud-Funel A, Pot B (2010) Probiotic properties of non-conventional lactic acid bacteria: immunomodulation by Oenococcus oeni. Int J Food Microbiol 140:136–145

    Article  PubMed  CAS  Google Scholar 

  • Freter R (1992) Factors affecting the microecology of the gut. In: Fuller R (ed) Probiotics. Chapman & Hall, London, pp 111–144

    Chapter  Google Scholar 

  • Fujiwara D, Inoue S, Wakabayashi H, Fujii T (2004) The anti-allergic effects of lactic acid bacteria are strain dependent and mediated by effects on both Th1/Th2 cytokine expression and balance. Int Arch Aller Imm 135(3):205–215

    Article  CAS  Google Scholar 

  • Fujiwara S, Seto Y, Kimura A, Hashiba S (2001) Intestinal transit of an orally administered streptomycin–rifampicin-resistant variant of Bifidobacterium longum SBT 2928: its long term survival and effect on the intestinal microflora and metabolism. J Appl Microbiol 90(1):43–52

    Article  PubMed  CAS  Google Scholar 

  • Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66(5):365–378

    Article  PubMed  CAS  Google Scholar 

  • Furrie E (2005) Probiotics and allergy. Proc Nutr Soc 64:465–469

    Article  PubMed  Google Scholar 

  • Ghadimi D, Folster-Holst R, de Vrese M, Winkler P, Heller KJ, Schrezenmeir J (2008) Effects of probiotic bacteria and their genomic DNA on Th1/Th2-cytokine production by peripheral blood mononuclear cells (PBMCs) of healthy and allergic subjects. Immunobiology 213:677–692

    Article  PubMed  CAS  Google Scholar 

  • Gill HS (1998) Stimulation of the immun system by lactic cultures. Int Dairy J 8:535–544

    Article  CAS  Google Scholar 

  • Goldin BR, Gorbuch SL, Saxelin M, Barakat S, Gualtieri L, Salminen S (1992) Survival of Lactobacillus species (strain GG) in human gastrointestinal tract. Dig Dis Sci 37:121–128

    Article  PubMed  CAS  Google Scholar 

  • Guarner F, Schaafsma GJ (1998) Probiotics. Int J Food Microbiol 39(3):237–238

    Article  PubMed  CAS  Google Scholar 

  • Havenaar R, Brink BT, Huis in’t Veld JHJ (1992) Selection of strains for probiotics use. In: Fuller R (ed) Probiotics. Chapman & Hall, London, pp 111–144

  • Helwig U, Lammers KM, Rizzello F, Brigidi P, Rohleder V, Caramelli E, Gionchetti P, Schrezenmeir J, Foelsch UR, Schreiber S, Campieri M (2006) Lactobacilli, bifidobacteria and E. coli nissle induce pro- and anti-inflammatory cytokines in peripheral blood mononuclear cells. World J Gastroenterol 12:5978–5986

    PubMed  CAS  Google Scholar 

  • Iannitti T, Palmieri B (2010) Therapeutical use of probiotic formulations in clinical practice. Clin Nutr 29:701–725

    Article  PubMed  CAS  Google Scholar 

  • Iliev ID, Kitazawa H, Shimosato T, Katoh S, Morita H, He F, Hosoda M, Saito T (2005) Strong immunostimulation in murine immune cells by Lactobacillus rhamnosus GG DNA containing novel oligodeoxynucleotide pattern. Cell Microbiol 7:403–414

    Article  PubMed  CAS  Google Scholar 

  • Isolauri E (1999) Probiotics and gut inflammation. Curr Opin Gastroenterol 15:534–537

    Article  PubMed  CAS  Google Scholar 

  • Isolauri E, Juntunen M, Rautanen T, Sillanauke P, Koiuva T (1991) A human Lactobacillus strain (Lactobacillus casei sp. strain GG) promotes recovery from acute diarrhea in children. Pediatrics 88:90–97

    PubMed  CAS  Google Scholar 

  • Jonganurakkun B, Wang Q, Xu SH, Tada Y, Minamida K, Yasokawa D, Sugi M, Hara H, Asano K (2008) Pediococcus pentosaceus NB-17 for probiotic use. J Biosci Bioeng 106:69–73

    Article  PubMed  CAS  Google Scholar 

  • Kimoto H, Mizumachi K, Okamoto T, Kurisaki J (2004) New Lactococcus strain with immunomodulatory activity: enhancement of Th1-type immune response. Microbiol Immunol 48(2):75–82

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Danno K, Yasui H (2006) Immunomodulatory function and probiotic properties of lactic acid bacteria isolated from Mongolian fermented milk. Biosci Microflora 25(4):147–155

    CAS  Google Scholar 

  • Lammers KM, Brigidi P, Vitali B, Gionchetti P, Rizzello F, Caramelli E, Matteuzzi D, Campieri M (2003) Immunomodulatory effects of probiotic bacteria DNA: IL-1 and IL-10 response in human peripheral blood mononuclear cells. FEMS Immunol Med Microbiol 38:165–172

    Article  PubMed  CAS  Google Scholar 

  • Lebeer S, Vanderleyden J, De Keersmaecker SCJ (2008) Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol R 72:728–764

    Article  CAS  Google Scholar 

  • Li Y, Qu X, Yang H, Kang L, Xu Y, Bai B, Song W (2005) Bifidobacteria DNA induces murine macrophages activation in vitro. Cell Mol Immunol 2:473–478

    PubMed  CAS  Google Scholar 

  • Lo Curto A, Pitino I, Mandalari G, Dainty JR, Faulks RM, John Wickham MS (2011) Survival of probiotic lactobacilli in the upper gastrointestinal tract using an in vitro gastric model of digestion. Food Microbiol 28(7):359–366

    Article  Google Scholar 

  • Lomax AR, Calder PC (2009) Probiotics, immune function, infection and inflammation: a review of the evidence from studies conducted in humans. Curr Pharm Des 15:1428–1518

    Article  PubMed  CAS  Google Scholar 

  • Marin ML, Lee JH, Murtha J, Ustunol Z, Pestka JJ (1997) Differential cytokine production in clonal macrophage and T-cell lines cultured with bifidobacteria. J Dairy Sci 80:2713–2720

    Article  PubMed  CAS  Google Scholar 

  • Marteau P, Rambaud JC (1993) Potential of using lactic acid bacteria for therapy and immunomodulation in man. FEMS Microbiol Rev 12(1–3):207–220

    Article  PubMed  CAS  Google Scholar 

  • Medina M, Izquierdo E, Ennahar S, Sanz Y (2007) Differential immunomodulatory properties of Bifidobacterium longum strains: relevance to probiotic selection and clinical applications. Clin Exp Immunol 150:531–538

    Article  PubMed  CAS  Google Scholar 

  • Menard O, Gafa V, Kapel N, Rodriguez B, Butel MJ, Waligora-Dupriet AJ (2010) Characterization of immunostimulatory CpG-rich sequences from different Bifidobacterium species. Appl Environ Microbiol 76(9):2846–2855

    Article  PubMed  CAS  Google Scholar 

  • Morita H, He F, Fuse T, Ouwehand AC, Hashimoto H, Hosoda M, Mizumachi K, Kurisaki J (2002) Adhesion of lactic acid bacteria to CaCo-2 cells and their effect on cytokine secretion. Microbiol Immunol 46(4):293–297

    Article  PubMed  CAS  Google Scholar 

  • Murphy L, Dunne C, Kiely B, Shanahan F, O’Sullivan GC, Collins J (1999) In vivo assessment of potential probiotic Lactobacillus salivarius strains: evaluation of their establishment, persistence, and localisation in the murine gastrointestinal tract. Microb Ecol Health D 11:149–157

    Article  Google Scholar 

  • Nagao F, Nakayama M, Muto T, Okumura K (2000) Effects of a fermented milk drink containing Lactobacillus casei strain Shirota on the immune system in healthy human subjects. Biosci Biotech Bioch 64:2706–2708

    Article  CAS  Google Scholar 

  • Ng SC, Hart AL, Kamm MA, Stagg AJ, Knight SC (2009) Mechanisms of action of probiotics: recent advances. Inflamm Bowel Dis 15:300–310

    Article  PubMed  CAS  Google Scholar 

  • Niers LE, Timmerman HM, Rijkers GT, van Bleek GM, van Uden NO, Knol EF, Kapsenberg ML, Kimpen JL, Hoekstra MO (2005) Identification of strong interleukin-10 inducing lactic acid bacteria which down-regulate T helper type 2 cytokines. Clin Exp Allergy 35:1481–1489

    Article  PubMed  CAS  Google Scholar 

  • Niers LE, Hoekstra MO, Timmerman HM, van Uden NO, de Graaf PM, Smits HH, Kimpen JL, Rijkers GT (2007) Selection of probiotic bacteria for prevention of allergic diseases: immunomodulation of neonatal dendritic cells. Clin Exp Immunol 149:344–352

    Article  PubMed  CAS  Google Scholar 

  • Olivares M, Diaz-Ropero MP, Gomez N, Lara-Villoslada F, Maldonado JA, Martin R, Lopez-Huertas E, Rodriguez JM, Xaus J (2006) Oral administration of two probiotic strains, Lactobacillus coryniformis CECT5711 and Lactobacillus gasseri CECT5714, enhances the intestinal function of healthy adults. Int J Food Microbiol 107:104–111

    Article  PubMed  Google Scholar 

  • Osborne CA, Galic M, Sangwan P, Janssen PH (2005) PCR-generated artefact from 16S rRNA gene-specific primers. FEMS Microbiol Lett 248(2):183–187

    Article  PubMed  CAS  Google Scholar 

  • Osmanagaoglu O, Kiran F, Ataoglu H (2010) Evaluation of in vitro probiotic potential of Pediococcus pentosaceus OZF isolated from human breast milk. Probiot Antimicrob Prot 2(3):162–174

    Article  Google Scholar 

  • Osmanagaoglu O, Kiran F, Nes IF (2011) A probiotic bacterium, Pediococcus pentosaceus OZF, isolated from human breast milk produces pediocin AcH/PA-1. Afr J Biotechnol 10(11):2070–2079

    CAS  Google Scholar 

  • Peran L, Camuesco D, Comalada M, Nieto A, Concha A, Diaz-Ropero MP, Olivares M, Xaus J, Zarzuelo A, Galvez J (2005) Preventive effects of a probiotic, Lactobacillus salivarius ssp. salivarius, in the TNBS model of rat colitis. World J Gastroenterol 11:5185–5192

    PubMed  Google Scholar 

  • Perez-Cano FJ, Dong H, Yaqoob P (2010) In vitro immunomodulatory activity of Lactobacillus fermentum CECT5716 and Lactobacillus salivarius CECT5713: two probiotic strains isolated from human breast milk. Immunobiology 215(12):996–1004

    Article  PubMed  CAS  Google Scholar 

  • Repa A, Grangette C, Daniel C, Hochreiter R, Hoffmann-Sommergruber K, Thalhamer J, Kraft D, Breiteneder H, Mercenier A, Wiedermann U (2003) Mucosal co-application of lactic acid bacteria and allergen induces counter-regulatory immune responses in a murine model of birch pollen allergy. Vaccine 22(1):87–95

    Article  PubMed  CAS  Google Scholar 

  • Salminen S, von Wright A, Morelli L, Marteau P, Brassart D, de Vos WM, Fonden R, Saxelin M, Collins K, Mogensen G, Birkeland SE, Mattila-Sandholm T (1998) Demonstration of safety of probiotics - a review. Int J Food Microbiol 44(1–2):93–106

    Article  PubMed  CAS  Google Scholar 

  • Satokari R, Gronroos T, Laitinen K, Salminen S, Isolauri E (2009) Bifidobacterium and Lactobacillus DNA in the human placenta. Lett Appl Microbiol 48:8–12

    Article  PubMed  CAS  Google Scholar 

  • Sheih YH, Chiang BL, Wang LH, Liao CK, Gill HS (2001) Systemic immunity-enhancing effects in healthy subjects following dietary consumption of the lactic acid bacterium Lactobacillus rhamnosus HN001. J Am Coll Nutr 20:149–156

    Article  PubMed  CAS  Google Scholar 

  • Shida K, Takahashi R, Iwadate E, Takamizawa K, Yasui H, Sato T, Habu S, Hachimura S, Kaminogawa S (2002) Lactobacillus casei strain Shirota suppresses serum immunoglobulin E and immunoglobulin G1 responses and systemic anaphylaxis in a food allergy model. Clin Exp Allergy 32(4):563–570

    Article  PubMed  CAS  Google Scholar 

  • Shida K, Suzuki T, Kiyoshima-Shibata J, Shimada S, Nanno M (2006) Essential roles of monocytes in stimulating human peripheral blood mononuclear cells with Lactobacillus casei to produce cytokines and augment natural killer cell activity. Clin Vaccine Immunol 13:997–1003

    Article  PubMed  CAS  Google Scholar 

  • Simpson PJ, Fitzgerald GF, Stanton C, Ross RP (2006) Enumeration and identification of pediococci in powder-based products using selective media and rapid PFGE. J Microbiol Meth 64(1):120–125

    Article  CAS  Google Scholar 

  • Suskovic J, Kos B, Goreta J, Matosic S (2001) Role of lactic acid bacteria and bifidobacteria in synbiotic effect. Food Technol Biotech 39:227–235

    CAS  Google Scholar 

  • Suwanjinda D, Pala-Or K, Panbangred W (2009) Simultaneous detection of pediocin gene and species differentiation between Pediococcus acidilactici and Pediococcus pentosaceus in a one step multiplex-overlapping PCR methods. Food Biotech 23:179–189

    Article  CAS  Google Scholar 

  • Takagi A, Matsuzaki T, Sato M, Nomoto K, Morotomi M, Yokokura T (2001) Enhancement of natural killer cytotoxicity delayed murine carcinogenesis by a probiotic microorganism. Carcinogenesis 22(4):599–605

    Article  PubMed  CAS  Google Scholar 

  • Van Enckevort FH, Netea MG, Hermus AR, Sweep CG, Meis JF, Van der Meer JW, Kullberg BJ (1999) Increased susceptibility to systemic candidiasis in interleukin-6 deficient mice. Med Mycol 37(6):419–426

    Article  PubMed  Google Scholar 

  • Vinderola CG, Matar C, Perdigon G (2005) Role of the epithelial cells in the immune effects mediated by gram-positive probiotic bacteria. Involvement of Toll-like receotors. Clin Diagn Lab Immunol 12:1075–1084

    PubMed  CAS  Google Scholar 

  • Vizoso Pinto MG, Schuster T, Briviba K, Watzl B, Holzapfel WH, Franz CM (2007) Adhesive and chemokine stimulatory properties of potentially probiotic Lactobacillus strains. J Food Prot 70:125–134

    PubMed  Google Scholar 

  • Vizoso Pinto MG, Gomez MR, Seifert S, Watzl B, Holzapfel WH, Franz C (2009) Lactobacilli stimulate the innate immune response and modulate the TLR expression of HT29 intestinal epithelial cells in vitro. Int J Food Microbiol 133:86–93

    Article  PubMed  CAS  Google Scholar 

  • Wells CL, Maddaus LA, Jechorek RP, Simmons RL (1988) Role of intestinal anaerobic bacteria in colonization resistance. Eur J Clin Microbiol Infect Dis 7(1):107–113

    Article  PubMed  CAS  Google Scholar 

  • Yasui H, Shida K, Matsuzaki T, Yokokura T (1999) Immunomodulatory function of lactic acid bacteria. Antonie van Leeuwenhoek 76(1–4):383–389

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Zhao L, Guo H, Jiang L, Ren F (2011) Immunomodulatory effects of novel bifidobacterium and lactobacillus strains on murine macrophage cells. Afr J Microbiol Res 5(1):8–15

    CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Scientific and Technological Research Council of Turkey (TUBITAK) Project; SBAG 111S012. We thank to Tamer Kahraman and other members of Therapeutic ODN Research Laboratory for their excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozlem Osmanagaoglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osmanagaoglu, O., Kiran, F., Yagci, F.C. et al. Immunomodulatory function and in vivo properties of Pediococcus pentosaceus OZF, a promising probiotic strain. Ann Microbiol 63, 1311–1318 (2013). https://doi.org/10.1007/s13213-012-0590-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-012-0590-9

Keywords

Navigation