Skip to main content
Log in

Current covariance analysis-based open-circuit fault diagnosis for voltage-source-inverter-fed vector-controlled induction motor drives

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

In recent years, a faulty leg is mostly replaced by a healthy leg for current fault-tolerant control of power converters, and its fault diagnosis only needs to confirm the fault leg. For fault-tolerant control, this paper proposed a real-time, robust and accurate diagnosis method for the legs of insulated gate bipolar transistor open-circuit faults in the pulse-width-modulated voltage source inverters for vector-controlled induction motors based on three-phase current. The covariance of three-phase current is used to diagnose and locate faults by analyzing the correlation between them, and its performance is explained specifically under both health condition and fault conditions. The proposed method is simple and no additional current or voltage sensors are required. The fault diagnosis time is about half a current cycle. Experiments are conducted and the obtained results demonstrate the effectiveness and merit of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fuchs, F.W.: Some diagnosis methods for voltage source inverters in variable speed drives with induction machines—a survey. In: IECON ‘03 The Conference of the IEEE Industrial Electronics Society, 2003. IEEE, 2003, vol. 2, pp. 1378–1385

  2. Yang, S., Xiang, D., Bryant, A., et al.: Condition monitoring for device reliability in power electronic converters: a review. IEEE Trans. Power Electron. 25(11), 2734–2752 (2011)

    Article  Google Scholar 

  3. Yang, S., Bryant, A., Mawby, P., et al.: An industry-based survey of reliability in power electronic converters. IEEE Trans. Ind. Appl. 47(3), 1441–1451 (2011)

    Article  Google Scholar 

  4. Nandi, S., Toliyat, H.A., Li, X.: Condition monitoring and fault diagnosis of electrical motors—a review. IEEE Trans. Energy Convers. 20(4), 719–729 (2005)

    Article  Google Scholar 

  5. Choi, U., Lee, J.S., Blaabjerg, F., et al.: Open-circuit fault diagnosis and fault-tolerant control for a grid-connected NPC inverter. IEEE Trans. Power Electron. 31(10), 7234–7247 (2016)

    Google Scholar 

  6. Jung, S.M., Park, J.S., Kim, H.W., et al.: An MRAS-based diagnosis of open-circuit fault in PWM voltage-source inverters for pm synchronous motor drive systems. IEEE Trans. Power Electron. 28(5), 2514–2526 (2013)

    Article  Google Scholar 

  7. Gao, Z., Cecati, C., Ding, S.X.: A survey of fault diagnosis and fault-tolerant techniques—part II: fault diagnosis with knowledge-based and hybrid/active approaches. IEEE Trans. Ind. Electron. 62(6), 3768–3774 (2015)

    Google Scholar 

  8. An, Q.T., Sun, L.Z., Sun, L., et al.: Low-cost diagnostic method for open-switch faults in inverters. Electron. Lett. 46(14), 1021–1022 (2010)

    Article  Google Scholar 

  9. An, Q.T., Sun, L.Z., Zhao, K., et al.: Switching function model-based fast-diagnostic method of open-switch faults in inverters without sensors. IEEE Trans. Power Electron. 26(1), 119–126 (2010)

    Article  Google Scholar 

  10. De Araujo Ribeiro, R.L., Jacobina, C.B., Cabral, S.E.R., et al.: Fault detection of open-switch damage in voltage-fed PWM motor drive systems. IEEE Trans. Power Electron. 18(2), 587–593 (2003)

    Article  Google Scholar 

  11. Mirafzal, B.: Survey of fault-tolerance techniques for three-phase voltage source inverters. IEEE Trans. Ind. Electron. 61(10), 5192–5202 (2014)

    Article  Google Scholar 

  12. Song, Y., Wang, B.: Evaluation methodology and control strategies for improving reliability of HEV power electronic system. IEEE Trans. Veh. Technol. 63(8), 3661–3676 (2014)

    Article  Google Scholar 

  13. Shu, C., Ya-Ting, C., Tian-Jian, Y., et al.: A novel diagnostic technique for open-circuited faults of inverters based on output line-to-line voltage model. IEEE Trans. Ind. Electron. 63(7), 4412–4421 (2016)

    Article  Google Scholar 

  14. Wang, Y., Li, Z., Xu, M., et al.: A comparative study of two diagnostic methods based on the switching voltage pattern for IGBT open-circuit faults in voltage-source inverters. J. Power Electron. 16(3), 1087–1096 (2016)

    Article  Google Scholar 

  15. Campos-Delgado, D.U., Pecina-Sanchez, J.A., Espinoza-Trejo, D.R., et al.: Diagnosis of open-switch faults in variable speed drives by stator current analysis and pattern recognition. IET Electr. Power Appl. 7(6), 509–522 (2013)

    Article  Google Scholar 

  16. Zhang, J., Zhao, J., Zhou, D., et al.: High-performance fault diagnosis in PWM voltage-source inverters for vector-controlled induction motor drives. IEEE Trans. Power Electron. 29(11), 6087–6099 (2014)

    Article  Google Scholar 

  17. Burriel-Valencia, J., Puche-Panadero, R., Martinez-Roman, J., et al.: Short-frequency fourier transform for fault diagnosis of induction machines working in transient regime. IEEE Trans. Instrum. Meas. 66(3), 432–440 (2017)

    Article  Google Scholar 

  18. Gan, C., Wu, J., Yang, S., et al.: Fault diagnosis scheme for open-circuit faults in switched reluctance motor drives using fast Fourier transform algorithm with bus current detection. IET Power Electron. 9(1), 20–30 (2016)

    Article  Google Scholar 

  19. Aktas, M., Turkmenoglu, V.: Wavelet-based switching faults detection in direct torque control induction motor drives. IET Sci. Meas. Technol. 4(6), 303–310 (2010)

    Article  Google Scholar 

  20. Adouni, A., Francois, B., Sbita, L.: Open-circuit fault detection and diagnosis in pulse-width modulation voltage source inverters based on novel pole voltage approach. Trans. Inst. Meas. Control 38(7), 795–804 (2015)

    Article  Google Scholar 

  21. Alavi, M., Wang, D., Luo, M.: Short-circuit fault diagnosis for three-phase inverters based on voltage-space patterns. IEEE Trans. Ind. Electron. 61(10), 5558–5569 (2014)

    Article  Google Scholar 

  22. Shao, S., Watson, A.J., Clare, J.C., et al.: Robustness analysis and experimental validation of a fault detection and isolation method for the modular multilevel converter. IEEE Trans. Power Electron. 31(5), 3794–3805 (2016)

    Article  Google Scholar 

  23. Potamianos, P.G., Mitronikas, E.D., Safacas, A.N.: Open-circuit fault diagnosis for matrix converter drives and remedial operation using carrier-based modulation methods. IEEE Trans. Ind. Electron. 61(1), 531–545 (2014)

    Article  Google Scholar 

  24. Dhumale, R.B., Lokhande, S.D.: Neural network fault diagnosis of voltage source inverter under variable load conditions at different frequencies. Measurement 91, 565–575 (2016)

    Article  Google Scholar 

  25. Moosavi, S.S., Djerdir, A., Ait-Amirat, Y., et al.: Artificial neural network-based fault diagnosis in the AC–DC converter of the power supply of series hybrid electric vehicle. IET Electr. Syst. Transp. 6(2), 96–106 (2016)

    Article  Google Scholar 

  26. Toubakh, H., Sayed-Mouchaweh, M.: Hybrid dynamic classifier for drift-like fault diagnosis in a class of hybrid dynamic systems. Neurocomputing 171(C), 1496–1516 (2015)

    Google Scholar 

  27. Chen, W., Bazzi, A.: Logic-based methods for intelligent fault diagnosis and recovery in power electronics. IEEE Trans. Power Electron. 99, 5573–5589 (2016)

    Google Scholar 

  28. Zidani, F., Diallo, D., Benbouzid, M.E.H., et al.: A fuzzy-based approach for the diagnosis of fault modes in a voltage-fed PWM inverter induction motor drive. IEEE Trans. Ind. Electron. 55(2), 586–593 (2008)

    Article  Google Scholar 

  29. Wu, F., Zhao, J.: A real-time multiple open-circuit fault diagnosis method in voltage-source-inverter fed vector controlled drives. IEEE Trans. Power Electron. 31(2), 1425–1437 (2016)

    Article  MathSciNet  Google Scholar 

  30. Wu, F., Zhao, J.: Current similarity analysis based open-circuit fault diagnosis for two-level three-phase PWM rectifier. IEEE Trans. Power Electron. PP(99), 1–1 (2016)

    Google Scholar 

  31. An, Q.T., Sun, L., Sun, L.Z.: Current residual vector-based open-switch fault diagnosis of inverters in PMSM drive systems. IEEE Trans. Power Electron. 30(5), 2814–2827 (2015)

    Article  Google Scholar 

  32. Jlassi, I., Estima, J.O., Khil, S.K.E., et al.: A robust observer-based method for IGBTs and current sensors fault diagnosis in voltage-source inverters of PMSM drives. IEEE Trans. Ind. Appl. PP(99), 1 (2017)

    Google Scholar 

  33. Gao, Z., Cecati, C., Ding, S.: A survey of fault diagnosis and fault-tolerant techniques—part I: fault diagnosis with model-based and signal-based approaches. IEEE Trans. Ind. Electron. 62(6), 3757–3767 (2015)

    Article  Google Scholar 

  34. Dehong, Z., Jin, Z., Yunhua, L.: Model-predictive control scheme of five-leg AC–DC–AC converter-fed induction motor drive. IEEE Trans. Ind. Electron. 63(7), 4517–4526 (2016)

    Article  Google Scholar 

  35. Dehong, Z., Jin, Z., Yang, L.: Predictive torque control scheme for three-phase four-switch inverter-fed induction motor drives with DC-link voltages offset suppression. IEEE Trans. Power Electron. 30(6), 3309–3318 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 61573159, 61273174, and Provincial Science and technology plan project of Guangdong (2017B010118001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Zhou, Y. & Zhao, J. Current covariance analysis-based open-circuit fault diagnosis for voltage-source-inverter-fed vector-controlled induction motor drives. J. Power Electron. 20, 492–500 (2020). https://doi.org/10.1007/s43236-020-00043-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-020-00043-5

Keywords

Navigation