Skip to main content
Log in

Exploration and Mapping with Groups of Robots: Recent Trends

  • Group Robotics (M Gini and F Amigoni, Section Editors)
  • Published:
Current Robotics Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Multi-robot exploration—i.e., the problem of mapping unknown features of an environment—is fundamental in many tasks, including search and rescue, planetary exploration, and environmental monitoring. This article surveys recent literature with the aim at identifying current research trends, open challenges, and future directions.

Recent Findings

Since the first formalization of the exploration problem, current research has extended systems and algorithms to map 3D environments and more complex phenomena and considered real-world constraints. Deep learning-based approaches have seen some preliminary applications in decision-making.

Summary

While current research has been progressing towards systems that can work in the real world, long-term exploration in large unstructured environments with complex phenomena to map is still an open problem. This introduces opportunities for exciting research, including but not limited to generalized frameworks that bridge the gap between theory and practice, learning-based approaches, and robustness to failure and attacks, so that robots can be deployed safely in real-world environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Thrun S, Burgard W, Fox D. Probabilistic robotics. Cambridge, Mass.: MIT Press; 2005.

  2. K. Masaba and A. Quattrini Li, “ROS-CBT: Communication Benchmarking Tool for the Robot Operating System: Extended Abstract,” 2019 International Symposium on Multi-Robot and Multi-Agent Systems (MRS), New Brunswick, NJ, USA, 2019, pp. 1-3, doi: https://doi.org/10.1109/MRS.2019.890

  3. Wilcox BH. Robotic vehicles for planetary exploration. Appl Intell. 1992;2(2):181–93.

    Google Scholar 

  4. Dunbabin M, Marques L. Robots for environmental monitoring: significant advancements and applications. IEEE Robot Autom Mag. 2012;19(1):24–39.

    Google Scholar 

  5. Murphy RR, Tadokoro S, Kleiner A. Disaster robotics. In: Springer Handbook of Robotics. Springer; 2016. p. 1577–604.

    Google Scholar 

  6. Thrun S. Robotic mapping: a survey. Exploring artificial intelligence in the new millennium. 2002;1(1-35):1.

  7. Amigoni F, Basilico N, Quattrini Li A. Moving from ‘how to go there?’ to ‘where to go?’: towards increased autonomy of mobile robots. In: New trends in medical and service robots. Springer; 2014. p. 345–56.

    Google Scholar 

  8. Choset H. Coverage for robotics–a survey of recent results. Ann Math Artif Intell. 2001;31(1-4):113–26.

    MATH  Google Scholar 

  9. Galceran E, Carreras M. A survey on coverage path planning for robotics. Robot Auton Syst. 2013;61(12):1258–76.

    Google Scholar 

  10. Thrun SB. Exploration and model building in mobile robot domains. In: IEEE International Conference on Neural Networks; 1993. p. 175–180

    Google Scholar 

  11. Moravec HP. Sensor fusion in certainty grids for mobile robots. In: Sensor devices and systems for robotics. Springer; 1989. p. 253–76.

    Google Scholar 

  12. Cassandra AR, Kaelbling LP, Kurien JA. Acting under uncertainty: discrete Bayesian models for mobile-robot navigation. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). vol. 2. IEEE; 1996. p. 963–972.

  13. Yamauchi B. A frontier-based approach for autonomous exploration. In: Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA). ‘Towards New Computational Principles for Robotics and Automation’. 1997. p. 146–151.

  14. Gonzalez-Baños HH, Latombe JC. Navigation strategies for exploring indoor environments. Int J Robot Res 2002;21(10-11):829–848.

  15. Stachniss C. Robotic mapping and exploration. vol. 55. Springer; 2009.

  16. Parker LE, Rus D, Sukhatme GS. Multiple mobile robot systems. In: Springer Handbook of Robotics. Springer; 2016. p. 1335–84.

    Google Scholar 

  17. Yamauchi B. Frontier-based exploration using multiple robots. In: Proceedings of the Second International Conference on Autonomous Agents; 1998. p. 47–53.

    Google Scholar 

  18. Burgard W, Moors M, Stachniss C, Schneider FE. Coordinated multi-robot exploration. IEEE Trans Robot. 2005;21(3):376–86.

    Google Scholar 

  19. Zlot R, Stentz A, Dias MB, Thayer S. Multi-robot exploration controlled by a market economy. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). vol. 3. 2002. p. 3016–3023.

  20. Gerkey BP. Mataríc MJ. A formal analysis and taxonomy of task allocation in multirobot systems. Int J Robot Res. 2004;23(9):939–54.

    Google Scholar 

  21. Chung TH, Hollinger GA, Isler V. Search and pursuit-evasion in mobile robotics. Auton Robot. 2011;31(4):299.

    Google Scholar 

  22. Robin C, Lacroix S. Multi-robot target detection and tracking: taxonomy and survey. Auton Robot. 2016;40(4):729–60.

    Google Scholar 

  23. Bajcsy R, Aloimonos Y, Tsotsos JK. Revisiting active perception. Auton Robot. 2018;42(2):177–96.

    Google Scholar 

  24. Julia M, Gil A, Reinoso O. A comparison of path planning strategies for autonomous exploration and mapping of unknown environments. Auton Robot 2012;33(4):427–444.

  25. Amigoni F, Banfi J, Basilico N. Multirobot exploration of communication-restricted environments: a survey. IEEE Intell Syst. 2017;32(6):48–57.

    Google Scholar 

  26. Mitchell D, Michael N. Persistent multi-robot mapping in an uncertain environment. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). 2019. p. 4552–4558.

  27. Santos JM. Krajńık T, Fentanes JP, Duckett T. Lifelong information-driven exploration to complete and refine 4-D spatio-temporal maps. IEEE Robotics and Automation Letters. 2016;1(2):684–91.

    Google Scholar 

  28. Santos JM. Krajńık T, Duckett T. Spatio-temporal exploration strategies for long-term autonomy of mobile robots. Robot Auton Syst. 2017;88:116–26.

    Google Scholar 

  29. Williams CK, Rasmussen CE. Gaussian processes for machine learning, vol. 2. MA: MIT press Cambridge; 2006.

    MATH  Google Scholar 

  30. Jadidi MG, Miro JV, Dissanayake G. Gaussian processes autonomous mapping and exploration for range-sensing mobile robots. Auton Robot. 2018;42(2):273–90.

    Google Scholar 

  31. Wiedemann T, Shutin D, Lilienthal AJ. Model-based gas source localization strategy for a cooperative multi-robot system—a probabilistic approach and experimental validation incorporating physical knowledge and model uncertainties. Robot Auton Syst. 2019;118:66–79.

    Google Scholar 

  32. Quattrini Li A, Penumarthi PK, Banfi J, Basilico N, O’Kane JM, Rekleitis I, Nelakuditi S, Amigoni F. Multi-robot online sensing strategies for the construction of communication maps. Auton Robot. 2019;44:299–319.

  33. Sung Y, Dixit D, Tokekar P. Online multi-robot exploration of a translating plume: competitive algorithm and experiments. arXiv preprint arXiv:181102769. 2018.

  34. Fentanes JP, Gould I, Duckett T, Pearson S, Cielniak G. 3-D soil compaction mapping through kriging-based exploration with a mobile robot. IEEE Robotics and Automation Letters. 2018;3(4):3066–72.

    Google Scholar 

  35. Luo W, Sycara K. Adaptive sampling and online learning in multi-robot sensor coverage with mixture of Gaussian processes. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). 2018. p. 6359–6364.

  36. Luo W, Khatib SS, Nagavalli S, Chakraborty N, Sycara K. Distributed knowledge leader selection for multi-robot environmental sampling under bandwidth constraints. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2016. p. 5751–5757.

  37. Luo W, Nam C, Kantor G, Sycara K. Distributed environmental modeling and adaptive sampling for multi-robot sensor coverage. In: Proceedings of the International Conference on Autonomous Agents and MultiAgent Systems (AAMAS); 2019. p. 1488–1496.

  38. Renzaglia A. Briñón-Arranz L. Search and localization of a weak source with a multi-robot formation. J Intell Robot Syst. 2020;97(3):623–34.

  39. Dunbabin M. Autonomous greenhouse gas sampling using multiple robotic boats. In: Field and Service Robotics. Springer; 2016. p. 17–30.

    Google Scholar 

  40. Keidar M, Kaminka GA. Efficient frontier detection for robot exploration. Int J Robot Res. 2014;33(2):215–36.

    Google Scholar 

  41. Umari H, Mukhopadhyay S. Autonomous robotic exploration based on multiple rapidly-exploring randomized trees. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2017. p. 1396–1402.

  42. Viseras A, Xu Z, Merino L. Distributed multi-robot cooperation for information gathering under communication constraints. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). 2018. p. 1267–1272.

  43. Schmid L, Pantic M, Khanna R, Ott L, Siegwart R, Nieto J. An efficient sampling-based method for online informative path planning in unknown environments. IEEE Robotics and Automation Letters. 2020;5(2):1500–7.

    Google Scholar 

  44. Wang C, Chi W, Sun Y, Meng MQH. Autonomous robotic exploration by incremental road map construction. IEEE Trans Autom Sci Eng. 2019;16(4):1720–31.

    Google Scholar 

  45. Scott M, Jerath K. Multi-robot exploration and coverage: entropy-based adaptive maps with adjacency control laws. In: Proceedings of Annual American Control Conference (ACC). IEEE; 2018. p. 4403–4408.

  46. Nelson E, Corah M, Michael N. Environment model adaptation for mobile robot exploration. Auton Robot. 2018;42(2):257–72.

    Google Scholar 

  47. Cieslewski T, Kaufmann E, Scaramuzza D. Rapid exploration with multi-rotors: a frontier selection method for high speed flight. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2017. p. 2135–2142.

  48. Song S, Jo S. Surface-based exploration for autonomous 3D modeling. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). 2018. p. 1–8.

  49. Yoder L, Scherer S. Autonomous exploration for infrastructure modeling with a micro aerial vehicle. In: Field and service robotics. Springer; 2016. p. 427–40.

    Google Scholar 

  50. Selin M, Tiger M, Duberg D, Heintz F, Jensfelt P. Efficient autonomous exploration planning of large-scale 3-D environments. IEEE Robotics and Automation Letters. 2019;4(2):1699–706.

    Google Scholar 

  51. Bircher A, Kamel M, Alexis K, Oleynikova H, Siegwart R. Receding horizon path planning for 3D exploration and surface inspection. Auton Robot. 2018;42(2):291–306.

    Google Scholar 

  52. Meng Z, Qin H, Chen Z, Chen X, Sun H, Lin F, Ang M, Sun H. A two-stage optimized next-view planning framework for 3-D unknown environment exploration, and structural reconstruction. IEEE Robotics and Automation Letters. 2017;2(3):1680–7.

  53. Corah M, O’Meadhra C, Goel K, Michael N. Communication-efficient planning and mapping for multi-robot exploration in large environments. IEEE Robotics and Automation Letters. 2019;4(2):1715–21.

    Google Scholar 

  54. Renzaglia A, Dibangoye J, Le Doze V, Simonin O. Combining stochastic optimization and frontiers for aerial multi-robot exploration of 3D terrains. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2019. p. 4121–4126.

  55. Witting C, Fehr M, B̈ahnemann R, Oleynikova H, Siegwart R. History-aware autonomous exploration in confined environments using MAVs. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2018. p. 1–9.

  56. Oßwald S, Bennewitz M, Burgard W, Stachniss C. Speeding-up robot exploration by exploiting background information. IEEE Robot Autom Lett. 2016;1(2):716–23.

    Google Scholar 

  57. Luperto M, Alberto Borghese N, Fusi D, Amigoni F. Exploiting inaccurate a priori knowledge in robot exploration. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS). vol. 4. 2019. p. 2102–2104.

  58. Luperto M, Fusi D, Borghese NA, Amigoni F. Robot exploration using knowledge of inaccurate floor plans. In: Proceedings of European Conference on Mobile Robots (ECMR). IEEE; 2019. p. 1–7.

  59. Quattrini Li A, Cipolleschi R, Giusto M, Amigoni F. A semantically-informed multirobot system for exploration of relevant areas in search and rescue settings. Auton Robot. 2016;40(4):581–97.

    Google Scholar 

  60. Rincon JLS, Carpin S. Time-constrained exploration using toposemantic spatial models: a reproducible approach to measurable robotics. IEEE Robot Autom Mag. 2019;26(3):78–87.

    Google Scholar 

  61. Ström DP, Bogoslavskyi I, Stachniss C. Robust exploration and homing for autonomous robots. Robotics and Autonomous Systems. 2017;90:125–135.

  62. Smith AJ, Hollinger GA. Distributed inference-based multi-robot exploration. Auton Robot. 2018;42(8):1651–68.

    Google Scholar 

  63. • Caley JA, Lawrance NR, Hollinger GA. Deep learning of structured environments for robot search. Auton Robot. 2019;43(7):1695–714 This paper proposes a framework based on a convolutional neural network to predict goal locations and environmental features, improving robotics exploration and search.

    Google Scholar 

  64. Shrestha R, Tian FP, Feng W, Tan P, Vaughan R. Learned map prediction for enhanced mobile robot exploration. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). 2019. p. 1197–1204.

  65. Katyal K, Popek K, Paxton C, Burlina P, Hager GD. Uncertainty-aware occupancy map prediction using generative networks for robot navigation. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). 2019. p. 5453–5459.

  66. Riva A, Quattrini Li A, Amigoni F. Some performance bounds of strategies for graph exploration. In: Proceedings of International Conference on Autonomous Agents and Multiagent Systems (AAMAS). 2015. p. 1815–1816.

  67. Sinay M, Agmon N, Maksimov O, Kraus S, Peleg D. Maintaining communication in multi-robot tree coverage. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI); 2017. p. 4515–4522.

  68. Konak A, Cabrera-Mora F, Kulturel-Konak S. Agent-based simulations for multi-robot systems exploration of tree-like environments. In: Proceedings of IEEE International Conference on Real-time Computing and Robotics (RCAR). 2018. p. 172–176.

  69. Aguilar G, Bravo L, Ruiz U, Murrieta-Cid R, Chavez E. A distributed algorithm for exploration of unknown environments with multiple robots. J Intell Robot Syst. 2019;95(3-4):1021–40.

    Google Scholar 

  70. Martinez E, Laguna G, Murrieta-Cid R, Becerra HM, Lopez-Padilla R, LaValle SM. A motion strategy for exploration driven by an automaton activating feedback-based controllers. Auton Robot. 2019;43(7):1801–25.

    Google Scholar 

  71. Premkumar AP, Yu K, Tokekar P. A geometric approach for multi-robot exploration in orthogonal polygons. In: Algorithmic Foundations of Robotics XII. Springer; 2020. p. 896–911.

    Google Scholar 

  72. •• Best G, Cliff OM, Patten T, Mettu RR, Fitch R. Dec-MCTS: decentralized planning for multi-robot active perception. Int J Robot Res. 2019;38(2-3):316–37 This paper proposes a decentralized multi-robot planning algorithm that can be applied over a general class of problems in active perception. The proposed approach optimizes over relatively long-horizon sequences in the joint-action space and is robust to intermittent communication.

    Google Scholar 

  73. Ivanov A, Campbell M. An efficient robotic exploration planner with probabilistic guarantees. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). 2016. p. 4215–4221.

  74. Kantaros Y, Schlotfeldt B, Atanasov N, Pappas GJ. Asymptotically optimal planning for non-myopic multi-robot information gathering. In: Robotics: Science and Systems (RSS); 2019.

  75. Chen W, Liu L. Pareto Monte Carlo Tree Search for multi-objective informative planning. In: Robotics: Science and Systems (RSS); 2019.

  76. Chen W, Liu L. Multi-Objective and Model-Predictive Tree Search for spatiotemporal informative planning. In: Proceedings of IEEE Conference on Decision and Control (CDC). 2019. p. 5716–5722.

  77. Kemna S, Rogers JG, Nieto-Granda C, Young S, Sukhatme GS. Multi-robot coordination through dynamic Voronoi partitioning for informative adaptive sampling in communication-constrained environments. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). 2017. p. 2124–2130.

  78. Nieto-Granda C, Rogers JG III, Fung N, Kemna S, Christensen HI, Sukhatme G. On-line coordination tasks for multi-robot systems using adaptive informative sampling. In: International Symposium on Experimental Robotics. Springer; 2018. p. 318–27.

    Google Scholar 

  79. Matignon L, Jeanpierre L, Mouaddib AI. Coordinated multi-robot exploration under communication constraints using decentralized Markov decision processes. Proceedings of AAAI conference on Artificial Intelligence: In; 2012.

    Google Scholar 

  80. Lauri M, Ritala R. Planning for robotic exploration based on forward simulation. Robot Auton Syst. 2016;83:15–31.

    Google Scholar 

  81. Valentin L, Murrieta-Cid R, Muñoz-Gómez L, López-Padilla R, Alencastre-Miranda M. Motion strategies for exploration and map building under uncertainty with multiple heterogeneous robots. Adv Robot. 2014;28(17):1133–49.

  82. Best G, Faigl J, Fitch R. Online planning for multi-robot active perception with self-organising maps. Auton Robot. 2018;42(4):715–38.

    Google Scholar 

  83. Francis G, Ott L, Ramos F. Functional path optimisation for exploration in continuous occupancy maps. In: Robotics Research. Springer; 2020. p. 859–75.

    Google Scholar 

  84. Francis G, Ott L, Marchant R, Ramos F. Occupancy map building through Bayesian exploration. Int J Robot Res. 2019;38(7):769–92.

    Google Scholar 

  85. Bai S, Wang J, Doherty K, Englot B. Inference-enabled information-theoretic exploration of continuous action spaces. In: Robotics Research. Springer; 2018. p. 419–33.

    Google Scholar 

  86. Bai S, Wang J, Chen F, Englot B. Information-theoretic exploration with Bayesian optimization. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2016. p. 1816–1822.

  87. Ma KC, Ma Z, Liu L, Sukhatme GS. Multi-robot informative and adaptive planning for persistent environmental monitoring. In: Distributed Autonomous Robotic Systems. Springer; 2018. p. 285–298.

  88. Choudhury S, Kapoor A, Ranade G, Scherer S, Dey D. Adaptive information gathering via imitation learning. In: Robotics Science and Systems (RSS); 2017.

  89. Kober J, Bagnell JA, Peters J. Reinforcement learning in robotics: a survey. Int J Robot Res. 2013;32(11):1238–74.

    Google Scholar 

  90. Bai S, Chen F, Englot B. Toward autonomous mapping and exploration for mobile robots through deep supervised learning. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2017. p. 2379–2384.

  91. • Niroui F, Zhang K, Kashino Z, Nejat G. Deep reinforcement learning robot for search and rescue applications: exploration in unknown cluttered environments. IEEE Robot Autom Lett. 2019;4(2):610–7 This paper combines frontier-based exploration with deep reinforcement learning showing that a robot is able to explore more areas earlier on.

    Google Scholar 

  92. Zhu D, Li T, Ho D, Wang C, Meng MQH. Deep reinforcement learning supervised autonomous exploration in office environments. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). 2018. p. 7548–7555.

  93. Carrillo H, Dames P, Kumar V, Castellanos JA. Autonomous robotic exploration using a utility function based on Ŕenyi’s general theory of entropy. Auton Robot. 2018;42(2):235–56.

    Google Scholar 

  94. Mu B, Giamou M, Paull L, Agha-mohammadi Aa, Leonard J, How J. Information-based active SLAM via topological feature graphs. In: Proceedings of IEEE Conference on Decision and Control (CDC). 2016. p. 5583–5590.

  95. Zhang Q, Whitney D, Shkurti F, Rekleitis I. Ear-based exploration on hybrid metric/topological maps. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2014. p. 3081–3088.

  96. Lehner H, Schuster MJ, Bodenmüller T, Kriegel S. Exploration with active loop closing: a trade-off between exploration efficiency and map quality. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2017. p. 6191–6198.

  97. Palazzolo E, Stachniss C. Effective exploration for MAVs based on the expected information gain. Drones. 2018;2(1):9.

    Google Scholar 

  98. Mox D, Cowley A, Hsieh MA, Taylor CJ. Information based exploration with panoramas and angle occupancy grids. In: Distributed Autonomous Robotic Systems. Springer; 2018. p. 45–58.

    Google Scholar 

  99. Rappaport M, Bettstetter C. Coordinated recharging of mobile robots during exploration. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2017. p. 6809–6816.

  100. Cesare K, Skeele R, Yoo SH, Zhang Y, Hollinger G. Multi-UAV exploration with limited communication and battery. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). 2015. p. 2230–2235.

  101. Jensen EA, Gini M. Effects of communication restriction on online multi-robot exploration in bounded environments. In: Distributed Autonomous Robotic Systems. Springer; 2019. p. 469–83.

    Google Scholar 

  102. Woosley B, Dasgupta P, Rogers JG, Twigg J. Multi-robot information driven path planning under communication constraints. Auton Robot. 2019:1–17.

  103. Amigoni F, Banfi J, Basilico N, Rekleitis I, Quattrini Li A. Online update of communication maps for exploring multirobot systems under connectivity constraints. In: Distributed Autonomous Robotic Systems. Springer; 2019. p. 513–26.

    Google Scholar 

  104. Jensen EA, Lowmanstone L, Gini M. Communication-restricted exploration for search teams. In: Distributed Autonomous Robotic Systems. Springer; 2018. p. 17–30.

    Google Scholar 

  105. Banfi J, Quattrini Li A, Rekleitis I, Amigoni F, Basilico N. Strategies for coordinated multirobot exploration with recurrent connectivity constraints. Auton Robot. 2018;42(4):875–94.

    Google Scholar 

  106. Dutta A, Ghosh A, Kreidl OP. Multi-robot informative path planning with continuous connectivity constraints. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). 2019. p. 3245–3251.

  107. Jensen EA and Gini, M. Rolling dispersion for robot teams. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 2013, pp. 2473–2479.

  108. Schwager M, Dames P, Rus D, Kumar V. A multi-robot control policy for information gathering in the presence of unknown hazards. In: Robotics research. Springer; 2017. p. 455–72.

    Google Scholar 

  109. Corah M, Michael N. Distributed matroid-constrained submodular maximization for multi-robot exploration: Theory and practice. Auton Robot. 2019;43(2):485–501.

    Google Scholar 

  110. Kapoutsis AC, Chatzichristofis SA, Doitsidis L, de Sousa JB, Pinto J, Braga J, Kosmatopoulos EB. Real-time adaptive multi-robot exploration with application to underwater map construction. Auton Robot. 2016;40(6):987–1015.

  111. Hood S, Benson K, Hamod P, Madison D, O’Kane JM, Rekleitis I. Bird’s eye view: cooperative exploration by UGV and UAV. In: Proceedings of IEEE International Conference on Unmanned Aircraft Systems (ICUAS). 2017. p. 247–255.

  112. Wang L, Cheng D, Gao F, Cai F, Guo J, Lin M, Shen S. A collaborative aerial-ground robotic system for fast exploration. In: International Symposium on Experimental Robotics. Springer; 2018. p. 59–71.

  113. Delmerico J, Mueggler E, Nitsch J, Scaramuzza D. Active autonomous aerial exploration for ground robot path planning. IEEE Robotics and Automation Letters. 2017;2(2):664–71.

    Google Scholar 

  114. Manjanna S, Quattrini Li A, Smith RN, Rekleitis I, Dudek G. Heterogeneous multi-robot system for exploration and strategic water sampling. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). 2018. p. 1–8.

  115. Manjanna S, Hansen J, Quattrini Li A, Rekleitis I, Dudek G. Collaborative sampling using heterogeneous marine robots driven by visual cues. In: Proceedings of Conference on Computer and Robot Vision (CRV). IEEE; 2017. p. 87–94.

  116. Kit JL, Dharmawan AG, Mateo D, Foong S, Soh GS, Bouffanais R, Wood KL. Decentralized multi-floor exploration by a swarm of miniature robots teaming with wall-climbing units. In: Proceedings of IEEE International Symposium on Multi-Robot and Multi-Agent Systems (MRS). 2019. p. 195–201.

  117. Andre T, Bettstetter C. Collaboration in multi-robot exploration: to meet or not to meet? J Intell Robot Syst. 2016;82(2):325–37.

    Google Scholar 

  118. Al-Hussaini S, Gregory JM, Gupta SK. Generation of context-dependent policies for robot rescue decision-making in multi-robot teams. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2018. p. 4317–4324.

  119. Naazare M, Brüggemann B, Schulz D. Simultaneous exploration and information delivery using multiple heterogeneous robots under limited communication. In: Proceedings of IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). 2019. p. 30–35.

  120. Govindarajan V, Bhattacharya S, Kumar V. Human-robot collaborative topological exploration for search and rescue applications. In: Distributed Autonomous Robotic Systems. Springer; 2016. p. 17–32.

    Google Scholar 

  121. Reardon C, Lee K, Rogers JG, Fink J. Communicating via augmented reality for human-robot teaming in field environments. In: Proceedings of IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). 2019. p. 94–101.

  122. Vaughan R. Massively multi-robot simulation in Stage. Swarm Intell. 2008;2(2-4):189–208.

    Google Scholar 

  123. Koenig N, Howard A. Design and use paradigms for Gazebo, an open-source multi-robot simulator. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). vol. 3. 2004. p. 2149–2154.

  124. Carpin S, Lewis M, Wang J, Balakirsky S, Scrapper C. USARSim: a robot simulator for research and education. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). 2007. p. 1400–1405.

  125. Shah S, Dey D, Lovett C, Kapoor A. AirSim: high-fidelity visual and physical simulation for autonomous vehicles. In: Field and service robotics. Springer; 2018. p. 621–35.

    Google Scholar 

  126. Amigoni F, Luperto M, Quattrini Li A. Towards more realistic indoor environments for the virtual robot competition. RoboCup2014 team description papers. 2014.

  127. Faigl J, Kulich M. On benchmarking of frontier-based multi-robot exploration strategies. In: Proceedings of European Conference on Mobile Robots (ECMR). IEEE; 2015. p. 1–8.

  128. Gregory JM, Brookshaw I, Fink J, Gupta SK. An investigation of goal assignment for a heterogeneous robotic team to enable resilient disaster-site exploration. In: Proceedings of IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR). 2017. p. 133–140.

  129. Amigoni F, Bastianelli E, Berghofer J, Bonarini A, Fontana G, Hochgeschwender N, Iocchi L, Kraetzschmar G, Lima PU, Miraldo P, Nardi D, Matteucci M, Schiaffonati V. Competitions for benchmarking: task and functionality scoring complete performance assessment. IEEE Robot Autom Mag. 2015;22(3):53–61.

  130. Schuster MJ, Brunner SG, Bussmann K. Büttner S, D̈omel A, Hellerer M, Lehner H, Lehner P, Porges O, Reill J, Riedel S, Vayugundla M, Vodermayer B, Bodenmüller T, Brand C, Friedl W, Grixa I, Hirschmüller H, Kaßecker M, Márton Z-C, Nissler C, Ruess F, Suppa, M, Wedler A. Towards autonomous planetary exploration. J Intell Robot Syst. 2019;93(3-4):461–94.

  131. Gil S, Kumar S, Mazumder M, Katabi D, Rus D. Guaranteeing spoof-resilient multi- robot networks. Auton Robot. 2017;41(6):1383–400.

    Google Scholar 

  132. Toffetti G, Lötscher T, Kenzhegulov S, Spillner J, Bohnert TM. Cloud robotics: SLAM and autonomous exploration on PaaS. In: Companion Proceedings of the International Conference on Utility and Cloud Computing; 2017. p. 65–70.

  133. Suryan V, Gondhalekar N, Tokekar P. Multifidelity reinforcement learning with Gaussian processes: model-based and model-free algorithms. IEEE Robot Autom Mag. 2020.

  134. Luperto M, Amigoni F. Predicting the global structure of indoor environments: a constructive machine learning approach. Auton Robot. 2019;43(4):813–35.

    Google Scholar 

  135. Amigoni F, Reggiani M, Schiaffonati V. An insightful comparison between experiments in mobile robotics and in science. Auton Robot. 2009;27(4):313.

    Google Scholar 

  136. Monroy J, Hernandez-Bennetts V, Fan H, Lilienthal A, Gonzalez-Jimenez J. GADEN: A 3D gas dispersion simulator for mobile robot olfaction in realistic environments. Sensors. 2017;17(7):1479.

    Google Scholar 

  137. Henriksen EH, Schjølberg I, Gjersvik TB. UW MORSE: The underwater modular open robot simulation engine. In: Proceedings of IEEE/OES Autonomous Underwater Vehicles (AUV). 2016. p. 261–267.

  138. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robot Res. 2013.

Download references

Acknowledgments

The author would like to thank the National Science Foundation for its support (NSF 1923004, 1919647).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Quattrini Li.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Group Robotics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quattrini Li, A. Exploration and Mapping with Groups of Robots: Recent Trends. Curr Robot Rep 1, 227–237 (2020). https://doi.org/10.1007/s43154-020-00030-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43154-020-00030-5

Keywords

Navigation