Skip to main content
Log in

Applications of p-harmonic transplantation for functional inequalities involving a Finsler norm

  • Original Research Article
  • Published:
Partial Differential Equations and Applications Aims and scope Submit manuscript

Abstract

In this paper, we prove several inequalities such as Sobolev, Poincaré, logarithmic Sobolev, which involve a general norm with accurate information of extremals, and are valid for some symmetric functions. We use Ioku’s transformation, which is a special case of p-harmonic transplantation, between symmetric functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Alvino, A., Ferone, V., Trombetti, G., Lions, P.L.: Convex symmetrization and applications. Ann. Inst. H. Poincaré Anal. Non Linéaire 14(2), 275–293 (1997)

    Article  MathSciNet  Google Scholar 

  2. Alvino, A., Ferone, V., Mercaldo, A., Takahashi, F., Volpicelli, R.: Finsler Hardy–Kato’s inequality. J. Math. Anal. Appl. 470(1), 360–374 (2019)

    Article  MathSciNet  Google Scholar 

  3. Aubin, T.: Problèms isopérimétriques et space de Sobolev. J. Differ. Geom. 11, 573–598 (1976)

    Article  Google Scholar 

  4. Balogh, Z. M., Don, S., Kristály, Alexandru.: Sharp weighted log-Sobolev inequalities: characterization of equality cases and applications. arXiv:2202.05578

  5. Bandle, C., Brillard, A., Flucher, M.: Green’s function, harmonic transplantation, and best Sobolev constant in spaces of constant curvature. Trans. Am. Math. Soc. 350(3), 1103–1128 (1998)

    Article  MathSciNet  Google Scholar 

  6. Beckner, W.: Geometric asymptotics and the logarithmic Sobolev inequality. Forum Math. 11, 105–137 (1999)

    Article  MathSciNet  Google Scholar 

  7. Bellettini, G., Paolini, M.: Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Math. J. 25, 537–566 (1996)

    Article  MathSciNet  Google Scholar 

  8. Belloni, M., Ferone, V., Kawohl, B.: Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators. ZAMP 54, 771–783 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Burago, Y. D., Zalgaller, V. A.: Geometric inequalities, Grundlehren der mathematschen Wissenschaften, 285. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, xiv+331 pp (1988)

  10. Carlen, E.A., Loss, M.: Sharp constant in Nash’s inequality. Internat. Math. Res. Not. 7, 213–215 (1993)

    Article  MathSciNet  Google Scholar 

  11. Carleson, L., Chang, S.-Y.A.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. 2(110), 113–127 (1986)

    MathSciNet  MATH  Google Scholar 

  12. Csató, G., Roy, P.: Extremal functions for the singular Moser–Trudinger inequality in \(2\) dimensions. Calc. Var. Part. Differ. Equ. 54(2), 2341–2366 (2015)

    Article  MathSciNet  Google Scholar 

  13. Csató, G., Roy, P.: Singular Moser–Trudinger inequality on simply connected domains. Comm. Part. Differ. Equ. 41(5), 838–847 (2016)

    Article  MathSciNet  Google Scholar 

  14. del Pino, M., Dolbeault, J.: Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. 81, 847–875 (2002)

    Article  MathSciNet  Google Scholar 

  15. del Pino, M., Dolbeault, J.: The optimal Euclidean \(L^p\) -Sobolev logarithmic inequality. J. Funct. Anal. 197, 151–161 (2003)

    Article  MathSciNet  Google Scholar 

  16. Della Pietra, F., di Blasio, G., Gavitone, N.: Anisotropic Hardy inequalities. Proc. Roy. Soc. Edinburgh Sect. A 148A(3), 483–498 (2018)

    Article  MathSciNet  Google Scholar 

  17. Escobar, J.F.: Sharp constant in a Sobolev trace inequality. Indiana Univ. Math. J. 37, 687–698 (1988)

    Article  MathSciNet  Google Scholar 

  18. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, CRC press, iv + 268 pages (1992)

  19. Federer, H., Fleming, W.: Normal and Integral currents. Ann. Math. 72(2), 458–520 (1960)

    Article  MathSciNet  Google Scholar 

  20. Flucher, M.: Extremal functions for the Trudinger–Moser inequality in \(2\) dimensions. Comment. Math. Helv. 67, 471–497 (1992)

    Article  MathSciNet  Google Scholar 

  21. Gentil, I.: The general optimal \(L^p\) -Euclidean logarithmic Sobolev inequality by Hamilton–Jacobi equations. J. Funct. Anal. 201(2), 591–599 (2003)

    Article  Google Scholar 

  22. Gyula, G.C., Nguyen, V.H., Roy, P.: Extremals for the singular Moser–Trudinger inequality via \(n\) -harmonic transplantation. J. Differ. Equ. 270, 843–882 (2021)

    Article  MathSciNet  Google Scholar 

  23. Hersh, J.: Transplantation harmonique, transplantation par modules, et théorèmes isopérimètriques. Comment. Math. Helv. 44, 354–366 (1969)

    Article  MathSciNet  Google Scholar 

  24. Ioku, N.: Attainability of the best Sobolev constant in a ball. Math. Ann. 375(1–2), 1–16 (2019)

    Article  MathSciNet  Google Scholar 

  25. Ledoux, M.: Isoperimetry and Gaussian analysis, Lectures on Probability Theory and Statistics (Saint-Flour: Lecture Notes in Mathematics, 1648. Springer, Berlin 1996, 165–294 (1994)

  26. Maz’ya, V.: Sobolev Spaces, 2nd revised and augmented edition. Grundlehren der Mathematischen Wissenschaften, 342. Springer-Verlag, Berlin, xxviii+866 pp (2011)

  27. Mercaldo, A., Sano, M., Takahashi, F.: Finsler Hardy inequalities. Math. Nachr. 293(12), 2370–2398 (2020)

    Article  MathSciNet  Google Scholar 

  28. Moser, J.: A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20, 1077-1092 (1970)

  29. Nazaret, B.: Best constant in Sobolev trace inequalities on the half-space. Nonlinear Anal. 65(10), 1977–1985 (2006)

    Article  MathSciNet  Google Scholar 

  30. Ruzhansky, M., Suragan, D.: Hardy and Rellich inequalities, identities, and sharp remainders on homogeneous groups. Adv. Math. 317, 799–822 (2017)

    Article  MathSciNet  Google Scholar 

  31. Sano, M.: Improvements and generalizations of two Hardy type inequalities and their applications to the Rellich type inequalities. arXiv:2104.01737

  32. Sano, M.: Minimization problem associated with an improved Hardy–Sobolev type inequality. Nonlinear Anal. 200, 111965 (2020)

    Article  MathSciNet  Google Scholar 

  33. Sano, M., Takahashi, F.: Scale invariance structures of the critical and the subcritical Hardy inequalities and their improvements. Calc. Var. Part. Differ. Equ. 56(3), 14 (2017)

    Article  MathSciNet  Google Scholar 

  34. Sano, M., Takahashi, F.: Critical Hardy inequality on the half-space via the harmonic transplantation, to appear in Calc. Var. Partial Differential Equations

  35. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4) 110, 353–372 (1976)

    Article  MathSciNet  Google Scholar 

  36. Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MathSciNet  MATH  Google Scholar 

  37. Wang, G., Xia, C.: Blow-up analysis of a Finsler–Liouville equation in two dimensions. J. Differ. Equ. 252, 1668–1700 (2012)

    Article  MathSciNet  Google Scholar 

  38. Wang, G., Xia, C.: An optimal anisotropic Poincaré inequality for convex domains. Pacific J. Math. 258(2), 305–326 (2012)

    Article  MathSciNet  Google Scholar 

  39. Weissler, F.B.: Logarithmic Sobolev inequalities for the heat-diffusion semigroup. Trans. Am. Math. Soc. 237, 255–269 (1978)

    Article  MathSciNet  Google Scholar 

  40. Zhou, Changliang, Zhou, Chunqin: Moser-Trudinger inequality involving the anisotropic Dirichlet norm \((\int _{\Omega } F^N(\nabla u) dx)^{\frac{1}{N}}\) on \(W^{1, N}_0(\Omega )\). J. Funct. Anal. 276(9), 2901–2935 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Megumi Sano and Prof. Norisuke Ioku for fruitful discussions and giving us comments on this topic. This work was partly supported by Osaka City University Advanced Mathematical Institute MEXT Joint Usage / Research Center on Mathematics and Theoretical Physics JPMXP0619217849. The second author (F.T.) was supported by JSPS KAKENHI Grant-in-Aid for Scientific Research (B), JP19H01800, and JSPS Grant-in-Aid for Scientific Research (S), JP19H05597.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors have taken part in this research equally and they read and approved the final manuscript.

Corresponding author

Correspondence to Futoshi Takahashi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

This article is part of the section “Theory of PDEs” edited by Eduardo Teixeira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibi, S., Takahashi, F. Applications of p-harmonic transplantation for functional inequalities involving a Finsler norm. Partial Differ. Equ. Appl. 3, 32 (2022). https://doi.org/10.1007/s42985-022-00168-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42985-022-00168-1

Keywords

Mathematics Subject Classification

Navigation