Skip to main content
Log in

Effect of Na(I)-H2O clusters on self-assembly of sandwich-type U(VI)-containing silicotungstates and the efficient catalytic activity for the synthesis of substituted phenylsulfonyl-1H-pyrazoles

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

In this study, a sandwich-type uranium(VI)-containing silicotungstate KNa11H2(H2O)30[Na(UO2)(SiW9O34)]2·8H2O (1) with new three-dimensional (3D) structure was synthesized and characterized using single-crystal X-ray diffraction, Fourier transform infrared, Raman, solid-state ultraviolet–visible diffuse reflection spectra, thermogravimetric analysis and powder X-ray diffraction. Single crystal analysis revealed that the Na(I)-H2O clusters in 1 showed a two-dimensional structure similar to (4,4)-network and resulted in the formation of a new 3D structure of 1. In addition, it was notable that 1 presented excellent catalytic activity for the synthesis of substituted phenylsulfonyl-1H-pyrazoles via the cyclization reaction of 1,3-diketones with various substituted benzenesulfonyl hydrazides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pope MT, Müller A. Polyoxometalate chemistry: an old field with new dimensions in several disciplines. Angew Chem Int Ed. 1991;30(1):34.

    Article  Google Scholar 

  2. Du DY, Qin JS, Li SL, Su ZM, Lan YQ. Recent advances in porous polyoxometalate-based metal–organic framework materials. Chem Soc Rev. 2014;43(13):4615.

    Article  CAS  Google Scholar 

  3. Luo JC, Chen K, Yin PC, Li T, Wan G, Zhang J, Ye ST, Bi XM, Pang Y, Wei YG, Liu TB. Effect of cation-π interaction on macroionic self-assembly. Angew Chem Int Ed. 2018;57(15):4067.

    Article  CAS  Google Scholar 

  4. Long DL, Tsunashima R, Cronin L. Polyoxometalates: building blocks for functional nanoscale systems. Angew Chem Int Ed. 2010;49(10):1736.

    Article  CAS  Google Scholar 

  5. Han Q, Sun D, Zhao J, Liang X, Ding Y. A novel dicobalt-substituted tungstoantimonate polyoxometalate: synthesis, characterization, and photocatalytic water oxidation properties. Chin J Catal. 2019;40(6):953.

    Article  CAS  Google Scholar 

  6. Yang GP, Wu X, Yu B, Hu CW. Ionic liquid from vitamin B1 analogue and heteropolyacid: a recyclable heterogeneous catalyst for dehydrative coupling in organic carbonate. ACS Sustain Chem Eng. 2019;7(4):3727.

    Article  CAS  Google Scholar 

  7. Zhang J, Huang Y, Li G, Wei Y. Recent advances in alkoxylation chemistry of polyoxometalates: from synthetic strategies, structural overviews to functional applications. Coord Chem Rev. 2019;378:395.

    Article  CAS  Google Scholar 

  8. Yang GP, Zhang XL, Liu YF, Zhang DD, Li K, Hu CW. Self-assembly of Keggin-type U(VI)-containing tungstophosphates with a sandwich structure: an efficient catalyst for the synthesis of sulfonyl pyrazoles. Inorg Chem Front. 2021. https://doi.org/10.1039/D1QI00485A.

    Article  Google Scholar 

  9. Yang GP, Shang SX, Yu B, Hu CW. Ce (III)-Containing tungstotellurate (VI) with a sandwich structure: an efficient Lewis acid–base catalyst for the condensation cyclization of 1, 3-diketones with hydrazines/hydrazides or diamines. Inorg Chem Front. 2018;5(10):2472.

    Article  CAS  Google Scholar 

  10. Yang GP, Liu YF, Li K, Liu W, Yu B, Hu CW. H3PMo12O40-catalyzed coupling of diarylmethanols with epoxides/diols/aldehydes toward polyaryl-substituted aldehydes. Chin Chem Lett. 2020;31(12):3233.

    Article  CAS  Google Scholar 

  11. Qin B, Chen HY, Liang H, Fu L, Liu XF, Qiu XH, Liu SQ, Song R, Tang ZY. Reversible photoswitchable fluorescence in thin films of inorganic nanoparticle and polyoxometalate assemblies. J Am Chem Soc. 2010;132(9):2886.

    Article  CAS  Google Scholar 

  12. Zhang J, Wang LN, Chen XF, Niu CY, Wu LX, Tang ZY. Redox-regulated dynamic self-assembly of a lindqvist-type polyoxometalate complex. Acta Phys Chim Sin. 2020;36(9):1912002.

    Google Scholar 

  13. Chatelain L, Faizova R, Fadaei-Tirani F, Pécaut J, Mazzanti M. Structural snapshots of cluster growth from {U6} to {U38} during the hydrolysis of UCl4. Angew Chem Int Ed. 2019;58(10):3021.

    Article  CAS  Google Scholar 

  14. Knope KE, Soderholm L. Solution and solid-state structural chemistry of actinide hydrates and their hydrolysis and condensation products. Chem Rev. 2013;113(2):944.

    Article  CAS  Google Scholar 

  15. Armstrong CR, Nyman M, Shvareva T, Sigmon GE, Burns PC, Navrotsky A. Uranyl peroxide enhanced nuclear fuel corrosion in seawater. Proc Natl Acad Sci USA. 2012;109(6):1874.

    Article  CAS  Google Scholar 

  16. Latta DE, Gorski CA, Boyanov MI, O’Loughlin EJ, Kemner KM, Scherer MM. Influence of magnetite stoichiometry on UVI reduction. Environ Sci Technol. 2012;46(2):778.

    Article  CAS  Google Scholar 

  17. Creaser I, Heckel MC, Neitz RJ, Pope MT. Rigid nonlabile polyoxometalate cryptates [ZP5W30O110](15-n)− that exhibit unprecedented selectivity for certain lanthanide and other multivalent cations. Inorg Chem. 1993;32(9):1573.

    Article  CAS  Google Scholar 

  18. Zimmermann M, Belai N, Butcher RJ, Pope MT, Chubarova EV, Dickman MH, Kortz U. New lanthanide-containing polytungstates derived from the cyclic P8W48 anion:{Ln4(H2O)28[K⊂P8W48O184(H4W4O12)2Ln2(H2O)10]13-}x, Ln= La, Ce, Pr, Nd. Inorg Chem. 2007;46(5):1737.

    Article  CAS  Google Scholar 

  19. Gaunt AJ, May I, Collison D, Holman KT, Pope MT. Polyoxometal cations within polyoxometalate anions Seven-coordinate uranium and zirconium heteroatom groups in [(UO2)123-O)42-H2O)12(P2W15O56)4]32− and [Zr43-O)22-OH)2(H2O)4(P2W16O59)2]14−. J Mol Struct. 2003;656(1–3):101.

    Article  CAS  Google Scholar 

  20. Kohlgruber TA, Senchyk GA, Rodriguez VG, Mackley SA, DalBo F, Aksenov SM, Szymanowski JE, Sigmon GE, Oliver AG, Burns PC. Ionothermal synthesis of uranyl vanadate nanoshell heteropolyoxometalates. Inorg Chem. 2021;60(5):3355.

    Article  CAS  Google Scholar 

  21. Dembowski M, Olds TA, Pellegrini KL, Hoffmann C, Wang X, Hickam S, He J, Oliver AG, Burns PC. Solution 31P NMR study of the acid-catalyzed formation of a highly charged {U24Pp12} nanocluster, [(UO2)24(O2)24(P2O7)12]48–, and its structural characterization in the solid state using single-crystal neutron diffraction. J Am Chem Soc. 2016;138(27):8547.

    Article  CAS  Google Scholar 

  22. Colliard I, Falaise C, Nyman M. Bridging the transuranics with uranium (IV) sulfate aqueous species and solid phases. Inorg Chem. 2020;59(23):17049.

    Article  CAS  Google Scholar 

  23. Nyman M, Burns PC. A comprehensive comparison of transition-metal and actinyl polyoxometalates. Chem Soc Rev. 2012;41(22):7354.

    Article  CAS  Google Scholar 

  24. Goura J, Sundar A, Bassil BS, Ćirić-Marjanović G, Bajuk-Bogdanović D, Kortz U. Peroxouranyl-containing W48 wheel: synthesis, structure, and detailed infrared and raman spectroscopy study. Inorg Chem. 2020;59(23):16789.

    Article  CAS  Google Scholar 

  25. Mal SS, Dickman MH, Kortz U. Actinide polyoxometalates: incorporation of uranyl–peroxo in U-shaped 36-tungsto-8-phosphate. Chem Eur J. 2008;14(32):9851.

    Article  CAS  Google Scholar 

  26. Kim KC, Pope MT. Cation-directed structure changes in polyoxometalate chemistry. Equilibria between isomers of bis (9-tungstophosphatodioxouranate (VI)) complexes. J Am Chem Soc. 1999;121(37):8512.

    Article  CAS  Google Scholar 

  27. Wang HY, Zheng XY, Long LS, Kong XJ, Zheng LS. Sandwich-type uranyl phosphate–polyoxometalate cluster exhibiting strong luminescence. Inorg Chem. 2021;60(9):6790.

    Article  CAS  Google Scholar 

  28. Misra A, Kozma K, Streb C, Nyman M. Beyond charge balance: counter-cations in polyoxometalate chemistry. Angew Chem Int Ed. 2020;59(2):596.

    Article  CAS  Google Scholar 

  29. Kim KC, Gaunt A, Pope MT. New heteropolytungstates incorporating dioxouranium (VI). Derivatives of α-[SiW9O34]10−, α-[AsW9O33]9−, γ-[SiW10O36]8−, and [As4W40O140]28−. J Clust Sci. 2002;13(3):423.

    Article  CAS  Google Scholar 

  30. Cao J, Liu C, Jia QD. Complex solution chemistry behind the simple “one-pot” synthesis of vanadium-substituted polyoxometalates unraveled by electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom. 2016;30(S1):14.

    Article  CAS  Google Scholar 

  31. Téazéa A, Hervéa G, Finke RG, Lyon DK. α-, β-, and γ-Dodecatungstosilicic acids: isomers and related lacunary compounds. Inorg Synth. 1990;27:85.

    Google Scholar 

  32. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA, Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr. 2009;42(2):339.

    Article  CAS  Google Scholar 

  33. Sheldrick GM. SHELXT–integrated space-group and crystal-structure determination. Acta Crystallogr A. 2015;71(1):3.

    Article  Google Scholar 

  34. Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr C. 2015;71(1):3.

    Article  Google Scholar 

  35. McGrail BT, Sigmon GE, Jouffret LJ, Andrews CR, Burns PC. Raman spectroscopic and ESI-MS characterization of uranyl peroxide cage clusters. Inorg Chem. 2014;53(3):1562.

    Article  CAS  Google Scholar 

  36. Gaunt AJ, May I, Copping R, Bhatt AI, Collison D, Fox OD, Holman KT, Pope MT. A new structural family of heteropolytungstate lacunary complexes with the uranyl, UO22+, cation. Dalton Trans. 2003;15:3009.

    Article  Google Scholar 

  37. Monsigny L, Thuéry P, Berthet JC, Cantat T. Breaking C-O bonds with uranium: uranyl complexes as selective catalysts in the hydrosilylation of aldehydes. ACS Catal. 2019;9(10):9025.

    Article  CAS  Google Scholar 

  38. Hayes CE, Platel RH, Schafer LL, Leznoff DB. Diamido-ether actinide complexes as catalysts for the intramolecular hydroamination of aminoalkenes. Organometallics. 2012;31(19):6732.

    Article  CAS  Google Scholar 

  39. Boglio C, Lemière G, Hasenknopf B, Thorimbert S, Lacôte E, Malacria M. Lanthanide complexes of the monovacant Dawson polyoxotungstate [α1-P2W17O61]10− as selective and recoverable lewis acid catalysts. Angew Chem In Ed. 2006;45(20):3402.

    Article  Google Scholar 

  40. Yang GP, Liu YF, Lin XL, Ming BM, Li K, Hu CW. Self-assembly of a new 3D platelike ternary-oxo-cluster: an efficient catalyst for the synthesis of pyrazoles. Chin Chem Lett. 2021. https://doi.org/10.1016/j.cclet.2021.05.008.

    Article  Google Scholar 

  41. Yang GP, Li K, Lin XL, Li YJ, Cui CX, Cheng YY, Liu YF. Regio- and stereoselective synthesis of (Z)-3-ylidenephthalides via H3PMo12O40-catalyzed cyclization of 2-acylbenzoic acids with benzylic alcohols. Chin J Chem. 2021. https://doi.org/10.1002/cjoc.202100397.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 22001034), the Open Fund of the Jiangxi Province Key Laboratory of Synthetic Chemistry (Grant No. JXSC202008), and the Research Found of East China University of Technology (Grant Nos. DHBK2019264, DHBK2019265, DHBK2019267).

Author information

Authors and Affiliations

Authors

Contributions

Ke Li, Yu-Feng Liu, Kai Zeng, Xiao-Fei Gao, and Xiao-Ling Lin wrote the draft and collected the data; Wei Cen polished the draft; Guo-Ping Yang contributed to conceive the idea of the study. All authors contributed to the writing and revisions.

Corresponding authors

Correspondence to Yu-Feng Liu or Guo-Ping Yang.

Ethics declarations

Conflict of interest

The authors  declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2522 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Lin, XL., Zeng, K. et al. Effect of Na(I)-H2O clusters on self-assembly of sandwich-type U(VI)-containing silicotungstates and the efficient catalytic activity for the synthesis of substituted phenylsulfonyl-1H-pyrazoles. Tungsten 4, 149–157 (2022). https://doi.org/10.1007/s42864-021-00119-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-021-00119-0

Keywords

Navigation