Skip to main content
Log in

High-Performance Natural Melanin/Poly(vinyl Alcohol-co-ethylene) Nanofibers/PA6 Fiber for Twisted and Coiled Fiber-Based Actuator

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Twisted and coiled fiber-based actuators have drawn a great attention because their unique structure can provide mechanical response with the external thermal stimulus. Herein, an ultra-fast and light-weight twisted and coiled fiber-based actuator was designed based on a nature melanin/poly (vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibers/PA6 composite fiber. In brief, PA6 was firstly coated by melanin/PVA-co-PE nanofibers using a spraying method, followed by the twisting and coating the composite fiber to obtain the actuator. The excellent photothermal property of melanin contributed to the superior performance of the actuator, whereas the PVA-co-PE nanofibers was responsible for the uniform distribution of melanin and the enhanced mechanical property of the prepared-actuator. This unique design has led to the high performance of the melanin/NFs/PA6 fiber-based actuator, whose torsion actuation can reach to 14,000 rpm, and maximum tensile actuation was − 6.36% at temperature difference of 40 ℃. In addition, the tensile stress of PA6/NFs/melanin fiber was about four times higher than PA6 filaments. Owing to the simple and environmental-benign preparation method, as well as the excellent efficiency of twisted and coiled melanin/NFs/PA6 fiber-based actuator, this study highlights the facile design of the composite fiber for high-performance fiber-based actuators. This fiber-based actuator is promising for application in energy generator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang R, Fang S, Xiao Y, Gao E, Jiang N, Li Y, Mou L, Shen Y, Zhao W, Li S. Torsional refrigeration by twisted, coiled, and supercoiled fibers. Science. 2019;366:216.

    Article  CAS  Google Scholar 

  2. Haines CS, Lima MD, Li N, Spinks GM, Foroughi J, Madden JD, Kim SH, Fang S, De Andrade MJ, Göktepe F. Artificial muscles from fishing line and sewing thread. Science. 2014;343:868.

    Article  CAS  Google Scholar 

  3. Zhang M, Baughman RH, Atkinson KR. Fabrication of twisted and non-twisted nanofiber yarns. Google Patents; 2015.

  4. Sharafi S, Li G. A multiscale approach for modeling actuation response of polymeric artificial muscles. Soft Matter.2015, 11, 3833.

  5. Kim SH, Lima MD, Kozlov ME, Haines CS, Spinks GM, Aziz S, Choi C, Sim HJ, Wang X, Lu H. Harvesting temperature fluctuations as electrical energy using torsional and tensile polymer muscles. Energy Environ Sci.2015;8:3336.

    Article  CAS  Google Scholar 

  6. Cheng H, Hu Y, Zhao F, Dong Z, Wang Y, Chen N, Zhang Z, Qu L. Moisture-activated torsional graphene-fiber motor. Adv Mater.2014;26, 2909.

  7. Wang W, Xiang C, Liu Q, Li M, Zhong W, Yan K, Wang D. Natural alginate fiber-based actuator driven by water or moisture for energy harvesting and smart controller applications. J Mater Chem A.2018;6:22599.

    Article  CAS  Google Scholar 

  8. Wang W, Xiang C, Sun D, Li M, Yan K, Wang D. Photothermal and moisture actuator made with graphene oxide and sodium alginate for remotely controllable and programmable intelligent devices. ACS Appl Mater Interfaces.2019;11:24.

    CAS  Google Scholar 

  9. Chen P, Xu Y, He S, Sun X, Pan S, Deng J, Chen D, Peng H. Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nat Nanotechnol.2015;10:1077.

    Article  CAS  Google Scholar 

  10. Lima MD, Li N, De Andrade MJ, Fang S, Oh J, Spinks GM, Kozlov ME, Haines CS, Suh D, Foroughi J. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science. 2012;338:928.

    Article  CAS  Google Scholar 

  11. Song Y, Zhou S, Jin K, Qiao J, Li D, Xu C, Hu D, Di J, Li M, Zhang Z. Hierarchical carbon nanotube composite yarn muscles. Nanoscale. 2018;10:4077.

    Article  CAS  Google Scholar 

  12. Xu L, Peng Q, Zhu Y, Zhao X, Yang M, Wang S, Xue F, Yuan Y, Lin Z, Xu F. Artificial muscle with reversible and controllable deformation based on stiffness-variable carbon nanotube spring-like nanocomposite yarn. Nanoscale. 2019;11:8124.

    Article  CAS  Google Scholar 

  13. Hyunsoo K, Hwan MJ, Jin MT, Gyu PT, Geoffrey MS, Gordon W, Jeong KS. Thermally responsive torsional and tensile fiber-actuator based on graphene oxide. ACS Appl Mater Interfaces.2018;10:38.

    Google Scholar 

  14. Yuan J, Neri W, Zakri C, Merzeau P, Kratz K, Lendlein A, Poulin P. Shape memory nanocomposite fibers for untethered high-energy microengines. Science. 2019;365:155.

    CAS  Google Scholar 

  15. Suzuki M, Kamamichi N. Displacement control of an antagonistic-type twisted and coiled polymer actuator. Smart Mater Struct.2018;27:035003.

    Article  Google Scholar 

  16. Yang SY, Cho KH, Kim Y, Song M-G, Jung HS, Yoo JW, Moon H, Koo JC, Nam J-D, Choi HR. High performance twisted and coiled softactuator with Spandex fiber for artificial muscles. Smart Mater Struct. 2017;26:105025.

    Article  Google Scholar 

  17. Tang X, Li K, Chen W, Zhou D, Liu S, Zhao J, Liu Y. Temperature self-sensing and closed-loop position control of twisted and coiled actuator. Sens Actuat A. 2019;285:319.

    Article  CAS  Google Scholar 

  18. Kim S, Hawkes E, Choy K, Joldaz M, Foleyz J, Wood R, editors. Micro artificial muscle fiber using NiTi spring for soft robotics. 2009, IEEE, St Louis

  19. Park CH, Son YS, editors. SMA spring-based artificial muscle actuated by hot and cool water using faucet-like valve. Active and Passive Smart Structures and Integrated Systems. 2017; International Society for Optics and Photonics, Bellingham

  20. Haines CS, et al. Artificial muscles from fishing line and sewing thread. Science. 2014;343:868.

    Article  CAS  Google Scholar 

  21. Carlen ET, Mastrangelo CH. Electrothermally activated paraffin microactuators. J Microelectromech Syst.2002;11:165.

    Article  CAS  Google Scholar 

  22. Mirvakili SM, Ravandi AR, Hunter IW, Haines CS, Li N, Foroughi J, Naficy S, Spinks GM, Baughman RH, Madden JD, editors. Simple and strong: twisted silver painted nylon artificial muscle actuated by Joule heating Electroactive Polymer Actuators and Devices (EAPAD); 2014; International Society for Optics and Photonics, Bellingham.

  23. Di J, Fang S, Moura FA, Galvão DS, Bykova J, Aliev A, de Andrade MJ, Lepró X, Li N, Haines C. Strong, twist-stable carbon nanotube yarns and muscles by tension annealing at extreme temperatures. Adv Mater.2016;28:6598.

    Article  CAS  Google Scholar 

  24. Foroughi J, Spinks GM, Wallace GG, Oh J, Kozlov ME, Fang S, Mirfakhrai T, Madden JD, Shin MK, Kim SJ, Baughman RH. Torsional carbon nanotube artificial muscles. Science. 2011;334:494.

    Article  CAS  Google Scholar 

  25. Shi HK, Haines CS, Li N, Kim KJ, Mun TJ, Choi C, Di J, Oh YJ, Oviedo JP, Bykova J. Harvesting electrical energy from carbon nanotube yarn twist. Science. 2017;357(6353):773–778.

  26. Aziz S, Naficy S, Foroughi J, Brown HR, Spinks GM. Controlled and scalable torsional actuation of twisted nylon 6 fiber. J Polym Sci Part B Polym Phys.2017;54:1278.

    Article  CAS  Google Scholar 

  27. Aziz S, Naficy S, Foroughi J, Brown HR, Spinks GM. Effect of anisotropic thermal expansion on the torsional actuation of twist oriented polymer fibres. Polymer. 2017;129:127.

    Article  CAS  Google Scholar 

  28. Jia T, Wang Y, Dou Y, Li Y, Jung de Andrade M, Wang R, Fang S, Li J, Yu Z, Qiao R. Moisture sensitive smart yarns and textiles from self‐balanced silk fiber muscles. Adv Funct Mater.2019;29,1808241.

  29. Jiang Q, Luo Z, Men Y, Yang P, Peng H, Guo R, Tian Y, Pang Z, Yang W. Red blood cell membrane-camouflaged melanin nanoparticles for enhanced photothermal therapy. Biomaterials. 2017;143:29.

    Article  CAS  Google Scholar 

  30. Liu Y, Ai K, Liu J, Deng M, He Y, Lu L. Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv Mater.2013;25:1353.

    Article  CAS  Google Scholar 

  31. Xie W, Pakdel E, Liang Y, Kim YJ, Liu D, Sun L, Wang X. Natural eumelanin and its derivatives as multifunctional materials for bio-inspired applications: a review. Biomacromol.2019;20:4312–31.

    Article  CAS  Google Scholar 

  32. Chen C-T, Chuang C, Cao J, Ball V, Ruch D, Buehler MJ. Excitonic effects from geometric order and disorder explain broadband optical absorption in eumelanin. Nat Commun.2014;5:3859.

    Article  CAS  Google Scholar 

  33. Wang D, Liu N, Xu W, Sun G. Layer-by-layer structured nanofiber membranes with photoinduced self-cleaning functions. J Phys Chem C. 2011;115:6825.

    Article  CAS  Google Scholar 

  34. Liu Q, Chen J, Mei T, He X, Zhong W, Liu K, Wang W, Li M, Wang D, Wang Y. A facile route to the production of polymeric nanofibrous aerogels for environmentally sustainable applications. J Mater Chem A. 2019. https://doi.org/10.1039.C7TA10107D

  35. Yujia L, Qi H, Nolene B, Lu S, Xungai W. Recyclable one-step extraction and characterization of intact melanin from alpaca fibers. Fibers Polym.2018;19:1640.

    Article  CAS  Google Scholar 

  36. Xie W, Pakdel E, Liu D, Sun L, Wang X. Waste-hair-derived natural melanin/TiO2 hybrids as highly efficient and stable UV-shielding fillers for polyurethane films. ACS Sustain Chem Eng. 2019;8(3):1343–52.

    Article  CAS  Google Scholar 

  37. Murthy N. Metastable crystalline phases in nylon 6. Polym Commun.1991;32:301.

    CAS  Google Scholar 

  38. Murthy N, Curran S, Aharoni S, Minor H. Premelting crystalline relaxations and phase transitions in nylon 6 and 6, 6. Macromolecules. 1991;24:3215.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Deakin University-Wuhan Textile University joint PhD program. The authors thank Wuhan Engineering Technology Research Center for Advanced Fibers” for providing partial support for materials processing. The authors acknowledge the National Natural Science Foundation of China (Grant No. 51873166, 51873165), the Natural Science Foundation of Hubei Province (2016CFB386), Program of Hubei Technology Innovation-International Collaboration (2017AHB065) and Applied Fundamental Research Program of Wuhan Science and Technology Bureau (2017060201010165) for financial support. The authors also acknowledge for the financial support from Wuhan Advanced Fiber Engineering Technology Research Center and the Hubei Province Central Government Guides Local Science and Technology Development Projects (2018ZYYD057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 94496 kb)

Supplementary file3 (AVI 2773 kb)

Supplementary file4 (MP4 33906 kb)

Supplementary file5 (MP4 53134 kb)

Supplementary file6 (MP4 48779 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Pakdel, E., Xie, W. et al. High-Performance Natural Melanin/Poly(vinyl Alcohol-co-ethylene) Nanofibers/PA6 Fiber for Twisted and Coiled Fiber-Based Actuator. Adv. Fiber Mater. 2, 64–73 (2020). https://doi.org/10.1007/s42765-020-00036-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-020-00036-w

Keywords

Navigation