Skip to main content
Log in

Homogenization of the Mooney-Rivlin coefficients of graphene-based soft sandwich nanocomposites

  • Original Paper
  • Published:
Mechanics of Soft Materials Aims and scope Submit manuscript

Abstract

This paper presents an investigation into the homogenization of the nonlinear behavior of graphene-based soft sandwich nanocomposites via the rule of mixtures (ROM). These composites consist of soft polymers embedded with large contiguous graphene films with unit atomic thickness. They have a representative volume element with a sandwich construction exhibiting in-plane isotropy. Their unique characteristic is that they consist of a matrix and reinforcement which both behave nonlinearly. In this work, the in-plane mechanical behavior of both constituents as well as the composite is modeled via the compressible Mooney-Rivlin (MR) constitutive model. Two approaches to homogenize this nonlinear behavior are considered. The first approach, referred to as the linear ROM, applies the ROM to the initial tangent moduli of the constituents, and derives the composite’s MR coefficients from the homogenized initial tangent modulus. The second approach, referred to as the nonlinear ROM, builds on Ogden’s bounds on the strain energy density, and applies the ROM directly to the MR coefficients of the constituents to derive the composite’s MR coefficients. The predictions from both approaches are compared to the embedded element (EE) technique in Abaqus which enforces a kinematic constraint between the explicitly modeled constituents resulting in a parallel model. It is demonstrated that the nonlinear ROM approach properly homogenizes the entire nonlinear stress-stretch curve (both normal and shear), including the nonlinear Poisson effects, and embodies the correct strain energy density (SED). The linear ROM predicts reasonably the normal stress-stretch curve and the SED, but it does not capture Poisson’s ratio and the shear response well and therefore is not recommended. The nonlinear ROM is found to work for a wide range of stretch values, various reinforcement volume fractions, and loading conditions, especially for high stiffness ratios. For lower stiffness ratios (i.e., for a stiffer matrix), the nonlinear stress-stretch curves (normal and shear) and the SED are captured well by the nonlinear ROM, but not the out of plane Poisson effects, due to the assumed isotropy in the Mooney-Rivlin model. Finally, an analogous approach to determine the variational Hashin-Shtrikman bounds on the homogenized Mooney-Rivlin constants is proposed. These variational bounds are found to be tighter compared to the Voigt and Reuss bounds as expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material (data transparency)

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability (software application or custom code)

NA

References

  1. Agnelli, S., Baldi, F., Bignotti, F., Salvadori, A., Peroni, I.: Fracture characterization of hyperelastic polyacrylamide hydrogels. Eng. Fract. Mech. 203, 54–65 (2018). https://doi.org/10.1002/admi.202070066

    Article  Google Scholar 

  2. Mo, K., Zhang, T., Yan, W., Chang, C.: Tunicate cellulose nanocrystal reinforced polyacrylamide hydrogels with tunable mechanical performance. Cellulose 25(11), 6561–6570 (2018). https://doi.org/10.1007/s10570-018-2025-7

    Article  Google Scholar 

  3. Zhu, J., Guo, P., Chen, D., Xu, K., Wang, P., Guan, S.: Fast and excellent healing of hydroxypropyl guar gum/poly (n, n-dimethyl acrylamide) hydrogels. J. Polym. Sci. B Polym. Phys. 56(3), 239–247 (2018). https://doi.org/10.1002/polb.24514

    Article  Google Scholar 

  4. Lu, H., Zhang, S., Guo, L., Li, W.: Applications of graphene-based composite hydrogels: a review. RSC Adv. 7(80), 51008–51020 (2017). https://doi.org/10.1039/C7RA09634H

    Article  Google Scholar 

  5. Carr, A., Head, A., Boscoboinik, J., Bhatia, S., Eisaman, M.: Graphene/polymer interfaces: direct evidence of graphene-induced molecular reorientation in polymer films (adv. mater. interfaces 12/2020). Adv. Mater. Interf. 7. https://doi.org/10.1002/admi.202070066 (2020)

  6. Yang, X., Zhou, T., Zwang, T., Hong, G., Zhao, Y., Viveros, R., Fu, T-M, Gao, T., Lieber, C.: Bioinspired neuron-like electronics. Nat. Mater 18. https://doi.org/10.1038/s41563-019-0292-9 (2019)

  7. Daniel, I., Ishai, O., Daniel, I., Daniel, I.: Engineering Mechanics of Composite Materials, vol. 3. Oxford university press, New York (1994)

  8. Li, Y., Waas, A.M., Arruda, E.M.: The effects of the interphase and strain gradients on the elasticity of layer by layer (LBL) polymer/clay nanocomposites. Int. J. Solids Struct. 48(6), 1044–1053 (2011). https://doi.org/10.1016/j.ijsolstr.2010.12.008

    Article  MATH  Google Scholar 

  9. Raju, B., Hiremath, S.R., Mahapatra, D.R.: A review of micromechanics based models for effective elastic properties of reinforced polymer matrix composites. Compos. Struct. 204, 607–619 (2018). https://doi.org/10.1016/j.compstruct.2018.07.125

    Article  Google Scholar 

  10. Nemat-Nasser, S., Hori, M.: Micromechanics: overall properties of heterogeneous materials, vol. 37. Elsevier (2013)

  11. Li, Y., Waas, A.M., Arruda, E.M.: A closed-form, hierarchical, multi-interphase model for composites-derivation, verification and application to nanocomposites. J. Mech. Phys. Solids 59(1), 43–63 (2011). https://doi.org/10.1016/j.jmps.2010.09.015

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, H., Brinson, L.C.: A hybrid numerical-analytical method for modeling the viscoelastic properties of polymer nanocomposites. J. Appl. Mech. 73(5), 758–768 (2005). https://doi.org/10.1115/1.2204961

    Article  MATH  Google Scholar 

  13. Birman, V., Kardomateas, G.A.: Review of current trends in research and applications of sandwich structures. Compos. Part B: Eng. 142, 221–240 (2018). https://doi.org/10.1016/j.compositesb.2018.01.027

    Article  Google Scholar 

  14. Ponte Castañeda, P, Lopez-Pamies, O., Castañeda, P P: Homogenization estimates for fiber-reinforced elastomers with periodic microstructures. Int. J. Solids Struct. 44(18-19), 5953–5979 (2007). https://doi.org/10.1016/j.ijsolstr.2007.02.003

    Article  MathSciNet  MATH  Google Scholar 

  15. Jiménez, F.L., Pellegrino, S.: Constitutive modeling of fiber composites with a soft hyperelastic matrix. Int. J. Solids Struct. 49(3-4), 635–647 (2012)

    Article  Google Scholar 

  16. Yousefsani, S.A., Shamloo, A., Farahmand, F.: Nonlinear mechanics of soft composites: hyperelastic characterization of white matter tissue components. Biomech. Model. Mechanobiol., 1–11 (2019)

  17. Hill, R.: On constitutive macro-variables for heterogeneous solids at finite strain. Proc. R. Soc. Lond. Math. Phys. Sci. 326(1565), 131–147 (1972). https://doi.org/10.1098/rspa.1972.0001

    MATH  Google Scholar 

  18. Ball, J.M.: Constitutive inequalities and existence theorems in nonlinear elastostatics. Nonlinear Anal. Mech. Heriot-Watt Symp. 1, 187–241 (1977)

    MathSciNet  Google Scholar 

  19. Ogden, R.W.: Extremum principles in non-linear elasticity and their application to composites-I: theory. Int. J. Solids Struct. 14(4), 265–282 (1978). https://doi.org/10.1016/0020-7683(78)90037-9

    Article  MATH  Google Scholar 

  20. Ponte Castañeda, P.: The overall constitutive behaviour of nonlinearly elastic composites. Proc. R. Soc. Lond. Math. Phys. Sci. 422(1862), 147–171 (1989). https://doi.org/10.1098/rspa.1989.0023

    MathSciNet  MATH  Google Scholar 

  21. Ponte Castañeda, E.: A second-order homogenization method in finite elasticity and applications to black-filled elastomers. J. Mech. Phys. Solids 48(6-7), 1389–1411 (2000). https://doi.org/10.1016/s0022-5096(99)00087-3

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, D., Yao, Y.: An approximate method to predict the mechanical properties of small volume fraction particle-reinforced composites with large deformation matrix. Acta Mech. 230(9), 3307–3315 (2019). https://doi.org/10.1007/s00707-019-02444-5

    Article  Google Scholar 

  23. Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast Phys. Sci. Solids 61(1), 1–48 (2000)

    MathSciNet  MATH  Google Scholar 

  24. Pandolfi, A., Holzapfel, G.A.: Three-dimensional modeling and computational analysis of the human cornea considering distributed collagen fibril orientations. J. Biomech. Eng 130(6) (2008)

  25. Castaneda, P.P.: Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: I—theory. J. Mech. Phys. Solids 50(4), 737–757 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Agoras, M., Lopez-Pamies, O., Castañeda, P.P.: A general hyperelastic model for incompressible fiber-reinforced elastomers. J. Mech. Phys. Solids 57(2), 268–286 (2009)

    Article  MATH  Google Scholar 

  27. Lopez-Pamies, O., Idiart, M.I.: Fiber-reinforced hyperelastic solids: a realizable homogenization constitutive theory. J Eng Math 68(1), 57–83 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Aboudi, J., Volokh, K.Y.: Failure prediction of unidirectional composites undergoing large deformations. J Appl Mech 82(7) (2015)

  29. Aboudi, J., Arnold, S.M., Bednarcyk, B.A.: Micromechanics of composite materials: a generalized multiscale analysis approach. Butterworth-Heinemann (2013)

  30. Aboudi, J., Pindera, M-J: High-fidelity micromechanical modeling of continuously reinforced elastic multiphase materials undergoing finite deformations. Math. Mech. Solids 9(6), 599–628 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Aboudi, J.: Finite strain micromechanical analysis of rubber-like matrix composites incorporating the Mullins damage effect. Int. J. Damage Mech. 18(1), 5–29 (2009)

    Article  Google Scholar 

  32. Bertoldi, K., Lopez-Pamies, O.: Some remarks on the effect of interphases on the mechanical response and stability of fiber-reinforced elastomers. J. Appl. Mech. 79(3). https://doi.org/10.1115/1.4006024 (2012)

  33. Rudykh, S., Debotton, G.: Instabilities of hyperelastic fiber composites: micromechanical versus numerical analyses. J. Elast. 106(2), 123–147 (2011). https://doi.org/10.1007/s10659-011-9313-x

    Article  MathSciNet  MATH  Google Scholar 

  34. Slesarenko, V., Rudykh, S.: Microscopic and macroscopic instabilities in hyperelastic fiber composites. J. Mech. Phys. Solid 99, 471–482 (2017). https://doi.org/10.1016/j.jmps.2016.11.002

    Article  MathSciNet  Google Scholar 

  35. Galich, P.I., Slesarenko, V., Li, J., Rudykh, S.: Elastic instabilities and shear waves in hyperelastic composites with various periodic fiber arrangements. Int. J. Eng. Sci. 130, 51–61 (2018). https://doi.org/10.1016/j.ijengsci.2018.05.003

    Article  MATH  Google Scholar 

  36. Arora, N., Batan, A., Li, J., Slesarenko, V., Rudykh, S.: On the influence of inhomogeneous interphase layers on instabilities in hyperelastic composites. Materials 12(5), 763 (2019). https://doi.org/10.3390/ma12050763

    Article  Google Scholar 

  37. R.W., O, H., H: Large deformation isotropic elasticity - on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. Math. Phys. Sci. 326(1567), 565–584 (1972). https://doi.org/10.1098/rspa.1972.0026

    Google Scholar 

  38. Lopez-Pamies, O.: A new ı1-based hyperelastic model for rubber elastic materials. Comptes Rend. Mecanique - C R MEC 338, 3–11 (2010). https://doi.org/10.1016/j.crme.2009.12.007

    Article  MATH  Google Scholar 

  39. Sacks, M.S.: Biaxial mechanical evaluation of planar biological materials. J. Elast. Phys. Sci. Solids 61(1), 199–246 (2000)

    MATH  Google Scholar 

  40. Kong, T., Wang, L., Wyss, H.M., Shum, H.C.: Capillary micromechanics for core–shell particles. Soft Matter 10(18), 3271–3276 (2014)

    Article  Google Scholar 

  41. Rapoff, A.J., Heisey, D.M., Vanderby, Jr., R.: A probabilistic rule of mixtures for elastic moduli. J. Biomech. 32(2), 189–193 (1999)

    Article  Google Scholar 

  42. Vercher, A., Giner, E., Arango, C., Tarancón, J.E., Fuenmayor, F.J.: Homogenized stiffness matrices for mineralized collagen fibrils and lamellar bone using unit cell finite element models. Biomech. Model. Mechanobiol. 13(2), 437–449 (2014)

    Article  Google Scholar 

  43. Goh, K.L., Holmes, D.F., Lu, H-Y, Richardson, S., Kadler, K.E., Purslow, P.P., Wess, T.J.: Ageing changes in the tensile properties of tendons: influence of collagen fibril volume fraction. J. Biomech. Eng. 130(2) (2008)

  44. Esmizadeh, E., Naderi, G., Ghoreishy, M.H.R.: Modification of theoretical models to predict mechanical behavior of PVC/NBR/organoclay nanocomposites. J. Appl. Polym. Sci. 130(5), 3229–3239 (2013). https://doi.org/10.1002/app.39556

    Article  Google Scholar 

  45. Bencherif, S.A., Srinivasan, A., Horkay, F., Hollinger, J.O., Matyjaszewski, K., Washburn, N.R.: Influence of the degree of methacrylation on hyaluronic acid hydrogels properties. Biomaterials 29(12), 1739–1749 (2008). https://doi.org/10.1016/j.biomaterials.2007.11.047

    Article  Google Scholar 

  46. Wei, X., Fragneaud, B., Marianetti, C., Kysar, J.: Nonlinear elastic behavior of graphene: ab initio calculations to continuum description. Phys. Rev. B 80. https://doi.org/10.1103/PhysRevB.80.205407 (2009)

  47. Papageorgiou, D.G., Kinloch, I.A., Young, R.J.: Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 90, 75–127 (2017). https://doi.org/10.1016/j.pmatsci.2017.07.004

    Article  Google Scholar 

  48. Cao, G.: Atomistic studies of mechanical properties of graphene. Polymers 6(9), 2404–2432 (2014). https://doi.org/10.3390/polym6092404

    Article  Google Scholar 

  49. Hou, X.-H., Xu, X.-J., Meng, J.-M., Ma, Y.-B., Deng, Z.-C.: Elastic constants and phonon dispersion relation analysis of graphene sheet with varied poisson’s ratio. Compos. Part B: Eng. 162, 411–424 (2019). https://doi.org/10.1016/j.compositesb.2018.12.133

    Article  Google Scholar 

  50. Shah, P.H., Batra, R.C.: Elastic moduli of covalently functionalized single layer graphene sheets. Comput. Mater. Sci. 95, 637–650 (2014). https://doi.org/10.1016/j.commatsci.2014.07.050

    Article  Google Scholar 

  51. Saavedra Flores, E., Ajaj, R., Adhikari, S., Dayyani, I., Friswell, M., Castro-Triguero, R.: Hyperelastic tension of graphene. Appl. Phys. Lett. 106, 061901 (2015). https://doi.org/10.1063/1.4908119

    Article  Google Scholar 

  52. Zhou, J., Huang, R.: Internal lattice relaxation of single-layer graphene under in-plane deformation. J. Mech Phys. Solids 56, 1609–1623 (2008). https://doi.org/10.1016/j.jmps.2007.07.013

    Article  MATH  Google Scholar 

  53. Jhon, Y., Jhon, Y.M., Yeom, G., Jhon, M.: Orientation dependence of the fracture behavior of graphene. Carbon 66, 619 (2014). https://doi.org/10.1016/j.carbon.2013.09.051

    Article  Google Scholar 

  54. Lee, C., Wei, X., Kysar, J., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Sci. (New York, N.Y.) 321, 385–8 (2008). https://doi.org/10.1126/science.1157996

    Article  Google Scholar 

  55. Nye, J.F.: Physical properties of crystals. Clarendon Press (1992)

  56. Kumar, N., Rao, V.V.: Hyperelastic Mooney-Rivlin model: determination and physical interpretation of material constants. Parameters 2(10), 01 (2016)

    Google Scholar 

  57. Smith, M.: Abaqus/standard user’s manual, version 2018. Dassault Systèmes Simulia Corp, US (2018)

    Google Scholar 

  58. Rai, A., Subramanian, N., Chattopadhyay, A.: Investigation of damage mechanisms in CNT nanocomposites using multiscale analysis. Int. J. Solids Struct. 120, 115–124 (2017)

    Article  Google Scholar 

  59. Lebedev, O.V., Ozerin, A.N., Abaimov, S.G.: Multiscale numerical modeling for prediction of piezoresistive effect for polymer composites with a highly segregated structure. Nanomaterials 11(1), 162 (2021)

    Article  Google Scholar 

  60. Matveeva, A.Y., Böhm, H.J., Kravchenko, G., van Hattum, F.W.J.: Investigation of the embedded element technique for modelling wavy CNT composites. Comput. Mater. Cont 42, 1–23 (2014)

    Google Scholar 

  61. Rai, A., Subramanian, N., Koo, B., Chattopadhyay, A.: Multiscale damage analysis of carbon nanotube nanocomposite using a continuum damage mechanics approach. J. Compos. Mater. 51(6), 847–858 (2017)

    Article  Google Scholar 

  62. Dolbow, J., Harari, I.: An efficient finite element method for embedded interface problems. Int. J. Numer. Methods Eng. 78(2), 229–252 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  63. Jancar, J., Douglas, J.F., Starr, F.W., Kumar, S.K., Cassagnau, P., Lesser, A.J., Sternstein, S.S., Buehler, M.J.: Current issues in research on structure–property relationships in polymer nanocomposites. Polymer 51(15), 3321–3343 (2010)

    Article  Google Scholar 

  64. Bernardo, L.F.A., Amaro, A.P.B.M., Pinto, D.G., Lopes, S.M.R.: Modeling and simulation techniques for polymer nanoparticle composites–a review. Comput Mater Sci 118, 32–46 (2016)

    Article  Google Scholar 

  65. Garimella, H.T., Menghani, R.R., Gerber, J.I., Sridhar, S., Kraft, R.H.: Embedded finite elements for modeling axonal injury. Ann. Biomed. Eng. 47(9), 1889–1907 (2019). https://doi.org/10.31224/osf.io/2dx5e

    Article  Google Scholar 

  66. Hashin, Z., Shtrikman, S.: On some variational principles in anisotropic and nonhomogeneous elasticity. J. Mech. Phys. Solids 10(4), 335–342 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  67. Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11(2), 127–140 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  68. Elías-Zúñiga, A., Baylón, K., Ferrer, I., Serenó, L., Garcia-Romeu, M.L., Bagudanch, I., Grabalosa, J., Pérez-Recio, T., Martínez-Romero, O., Ortega-Lara, W., et al.: On the rule of mixtures for predicting stress-softening and residual strain effects in biological tissues and biocompatible materials. Materials 7(1), 441–456 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Profs. Matthew Eisaman and Toshio Nakamura of Stony Brook University for their invaluable review of this study.

Funding

This work was supported by Stony Brook University’s Germination Space Funding Award.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. Conceptualization: (Kedar Kirane). Methodology: (Mersim Redzematovic and Kedar Kirane). Formal analysis and investigation: (Mersim Redzematovic and Kedar Kirane). Writing — original draft preparation: (Mersim Redzematovic). Writing — review and editing: (Kedar Kirane). Funding acquisition: (Kedar Kirane). Resources: (Kedar Kirane). Supervision: (Kedar Kirane)

Corresponding author

Correspondence to Kedar Kirane.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redzematovic, M., Kirane, K. Homogenization of the Mooney-Rivlin coefficients of graphene-based soft sandwich nanocomposites. Mech Soft Mater 3, 6 (2021). https://doi.org/10.1007/s42558-021-00036-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42558-021-00036-9

Keywords

Navigation