Skip to main content
Log in

An approximate method to predict the mechanical properties of small volume fraction particle-reinforced composites with large deformation matrix

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The aim of this paper is to propose an approximate homogenization method for deriving the effective strain energy density function of small volume fraction particle-reinforced hyperelastic matrix composites. This method is inspired by the finite element (FE) simulation of a single-particle representative volume element (RVE) model, in which an incompressible Yeoh constitutive model is used to describe the mechanical behavior of the matrix and the particle is regarded as a rigid material. According to the FE results, the RVE can be partitioned into different regions with uniform strain distributions, and then, the equivalent strain energy density function of the whole composite can be calculated based on a volume averaging treatment. With the new method, the stress–strain response of a mica particle-filled rubber matrix composite under uniaxial tension is theoretically predicted, and it shows a good agreement with both experimental measurements and numerical calculations, especially when the particle volume fraction is relatively small. Due to the simple derivation and concise formulation of the strain energy density function, the present method should be of practical value for engineering use in predicting the large deformation behavior of hyperelastic composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11, 582–592 (1940)

    Article  MATH  Google Scholar 

  2. Ogden, R.W.: Large deformation isotropic elasticity–correlation of theory and experiment for incompressible rubber like solids. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 326, 565–584 (1972)

    Article  MATH  Google Scholar 

  3. Valanis, K.C., Landel, R.F.: The strain-energy function of a hyperelastic material in terms of the extension ratios. J. Appl. Phys. 38, 2997–3002 (1967)

    Article  Google Scholar 

  4. Arruda, E.M., Boyce, M.C.: A 3-dimensional constitutive model for the large stretch behavior of rubber elastic-materials. J. Mech. Phys. Solids 41, 389–412 (1993)

    Article  MATH  Google Scholar 

  5. Debotton, G., Shmuel, G.: A new variational estimate for the effective response of hyperelastic composites. J. Mech. Phys. Solids 58, 466–483 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Duan, S., Wen, W., Fang, D.: A predictive micropolar continuum model for a novel three-dimensional chiral lattice with size effect and tension-twist coupling behavior. J. Mech. Phys. Solids 121, 23–46 (2018)

    Article  MathSciNet  Google Scholar 

  7. Bergstrom, J.S., Boyce, M.C.: Mechanical behavior of particle filled elastomers. Rubber Chem. Technol. 72, 633–656 (1999)

    Article  Google Scholar 

  8. Treloar, L.R.G.: Stress-strain data for vulcanised rubber under various types of deformation. Trans. Faraday Soc. 40, 0059–0069 (1944)

    Article  Google Scholar 

  9. Treloar, L.R.G., Montgomery, D.J.: The Physics of Rubber Elasticity. Clarendon Press, Oxford (1958)

    Google Scholar 

  10. Mullins, L., Tobin, N.R.: Stress softening in rubber vulcanizates. Part I. Use of a strain amplification factor to describe the elastic behavior of filler-reinforced vulcanized rubber. J. Appl. Polym. Sci. 9, 2993–3009 (1965)

    Article  Google Scholar 

  11. Hill, R.: Constitutive macro-variables for heterogeneous solids at finite strain. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 326, 131–147 (1972)

    Article  MATH  Google Scholar 

  12. Hill, R., Rice, J.R.: Elastic potentials and the structure of inelastic constitutive laws. SIAM J. Appl. Math. 25, 448–461 (1973)

    Article  MATH  Google Scholar 

  13. Lopez-Pamies, O., Castañeda, P.P.: On the overall behavior, microstructure evolution, and macroscopic stability in reinforced rubbers at large deformations: I—Theory. J. Mech. Phys. Solids 54, 831–863 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hashin, Z.: Large isotropic elastic deformation of composites and porous media. Int. J. Solids Struct. 21, 711–720 (1985)

    Article  MATH  Google Scholar 

  15. Ogden, R.W.: Extremum principles in non-linear elasticity and their application to composites—I: theory. Int. J. Solids Struct. 14, 265–282 (1978)

    Article  MATH  Google Scholar 

  16. Castaneda, P.P.: The overall constitutive behaviour of nonlinearly elastic composites. Proc. R. Soc. Lond. 422, 147–171 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lopez-Pamies, O., Castaneda, P.P.: Second-order estimates for the large-deformation response of particle-reinforced rubbers. c. r. Mec. 331, 1–8 (2003)

    Article  MATH  Google Scholar 

  18. Lopez-Pamies, O., Ponte Castaneda, P.: Second-order estimates for the macroscopic response and loss of ellipticity in porous rubbers at large deformations. J. Elast. 76, 247–287 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dorfmann, A., Ogden, R.W.: A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber. Int. J. Solids Struct. 41, 1855–1878 (2004)

    Article  MATH  Google Scholar 

  20. Drozdov, A.D.: Constitutive equations in finite elasticity of rubbers. Int. J. Solids Struct. 44, 272–297 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, Z.Y., Chen, Y., Wan, Q., et al.: A hyperelastic constitutive model for chain-structured particle reinforced neo-Hookean composites. Mater. Des. 95, 580–590 (2016)

    Article  Google Scholar 

  22. Lopez-Pamies, O.: An exact result for the macroscopic response of particle-reinforced Neo-Hookean solids. J. Mech. 77, 021016 (2010)

    Google Scholar 

  23. Lopez-Pamies, O., Idiart, M.: An exact result for the macroscopic response of porous Neo-Hookean solids. J. Elast. 95, 99–105 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Qi, H.J., Boyce, M.C.: Constitutive model for stretch-induced softening of the stress–stretch behavior of elastomeric materials. J. Mech. Phys. Solids 52, 2187–2205 (2004)

    Article  MATH  Google Scholar 

  25. Bouchart, V., Brieu, M., Bhatnagar, N., et al.: A multiscale approach of nonlinear composites under finite deformation: experimental characterization and numerical modeling. Int. J. Solids Struct. 47, 1737–1750 (2010)

    Article  MATH  Google Scholar 

  26. Goudarzi, T., Lopez-Pamies, O.: Numerical modeling of the nonlinear elastic response of filled elastomers via composite-sphere assemblages. J. Appl. Mech. 80, 050906 (2013)

    Article  Google Scholar 

  27. Guo, Z.Y., Shi, X.H., Chen, Y., et al.: Mechanical modeling of incompressible particle-reinforced Neo-Hookean composites based on numerical homogenization. Mech. Mater. 70, 1–17 (2014)

    Article  Google Scholar 

  28. Li, X., Xia, Y., Li, Z.R., et al.: Three-dimensional numerical simulations on the hyperelastic behavior of carbon-black particle filled rubbers under moderate finite deformation. Comput. Mater. Sci. 55, 157–165 (2012)

    Article  Google Scholar 

  29. Ilseng, A., Skallerud, B.H., Clausen, A.H.: An experimental and numerical study on the volume change of particle-filled elastomers in various loading modes. Mech. Mater. 106, 44–57 (2017)

    Article  Google Scholar 

  30. Segurado, J., Llorca, J.: A numerical approximation to the elastic properties of sphere-reinforced composites. J. Mech. Phys. Solids 50, 2107–2121 (2002)

    Article  MATH  Google Scholar 

  31. Gilormini, P., Toulemonde, P.A., Diani, J., et al.: Stress-strain response and volume change of a highly filled rubbery composite: experimental measurements and numerical simulations. Mech. Mater. 111, 57–65 (2017)

    Article  Google Scholar 

  32. Yeoh, O.H.: Some forms of the strain-energy function for rubber. Rubber Chem. Technol. 66, 754–771 (1993)

    Article  Google Scholar 

  33. Yeoh, O.H., Fleming, P.D.: A new attempt to reconcile the statistical and phenomenological theories of rubber elasticity. J. Polym. Sci. Part B Polym. Phys. 35, 1919–1931 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The work reported here is supported by NSFC through Grants (Nos. 11532013, 11872114, 11772333) and the Project of State Key Laboratory of Explosion Science and Technology (No. ZDKT17-02). The authors thank Jian Liu and Prof. Xiaohong Li (Engineering Research Center for Nanomaterials, Henan University) for their assistance in providing natural rubber-based particulate composite samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Yao, Y. An approximate method to predict the mechanical properties of small volume fraction particle-reinforced composites with large deformation matrix. Acta Mech 230, 3307–3315 (2019). https://doi.org/10.1007/s00707-019-02444-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02444-5

Navigation