Skip to main content
Log in

Rapid Prototyping of Variable Angle-Tow Composites

  • Original article
  • Published:
Aerotecnica Missili & Spazio Aims and scope Submit manuscript

Abstract

The recent development of new manufacturing techniques of composite structures, e.g., additive manufacturing (AM) techniques, allows for going beyond the classical design rules, thus leading the designer to find innovative and more efficient solutions like the variable angle-tow (VAT) composites. VAT composites allow taking advantage from the benefits related to the curvilinear fibre path in the most effective way, though their utilisation unavoidably implies an increased complexity of the design process. In fact, VAT composites are characterised by a large number of design variables involved at different scales. Accordingly, a dedicated multi-scale optimisation approach able to integrate both mechanical and technological requirements (to ensure the manufacturability of the solution) must be developed. In this work, the multi-scale two-level (MS2L) optimisation strategy for VAT laminates is used, for the first time, to design a VAT laminate by taking into account the manufacturing requirements related to the fused filament fabrication (FFF) and continuous filament fabrication (CFF) processes. To show the effectiveness of the MS2L strategy in terms of manufacturability of the optimised solutions, a prototype of the VAT plate is realised by developing an ad hoc CAD model interfaced with the CFF machine. The realised prototype matches very well the optimum fibre path resulting from the MS2L strategy and the importance of including technological constraints within the design process is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available within the article and from the corresponding author, A. Catapano, upon reasonable request.

References

  1. Hyer, M., Lee, H.: The use of curvilinear fiber format to improve buckling resistance of composite plates with central circular holes. Compos. Struct. 18, 239–261 (1991)

    Article  Google Scholar 

  2. Gurdal, Z., Tatting, B.F., Wu, K.C.: Variable stiffness panels: effects of stiffness variation on the in-plane and buckling responses. Compos. Part A Appl. Sci. Manuf. 39(9), 11–22 (2008)

    Google Scholar 

  3. Nagendra, S., Kodiyalam, S., Davis, J., Parthasarathy, V.: Optimization of tow fiber paths for composite design. In: Proceedings of the AIAA/ASME/ASCE/AHS/ASC 36th Structures, Structural Dynamics and Materials Conference, pp. 1031–1041. AIAA 95-1275, New Orleans (1995)

  4. Nik, M.A., Fayazbakhsh, K., Pasini, D., Lessard, L.: Surrogate-based multi-objective optimization of a composite laminate with curvilinear fibers. Compos. Struct. 94, 2306–2313 (2012)

    Article  Google Scholar 

  5. Nik, M.A., Fayazbakhsh, K., Pasini, D., Lessard, L.: Optimization of variable stiffness composites with embedded defects induced by automated fiber placement. Compos. Struct. 107, 160–166 (2014)

    Article  Google Scholar 

  6. Blom, A., Abdalla, M., Gürdal, Z.: Optimization of course locations in fiber-placed panels for general fiber angle distributions. Compos. Sci. Technol. 70, 564–570 (2010)

    Article  Google Scholar 

  7. Montemurro, M., Catapano, A.: A new paradigm for the optimum design of variable angle tow laminates, variational analysis and aerospace engineering. In: Frediani A., Mohammadi B., Pironneau O., Cipolla V. (eds.) Variational Analysis and Aerospace Engineering. Springer Optimization and Its Applications, vol. 116. Springer, Cham (2016)

    Chapter  Google Scholar 

  8. Montemurro, M., Catapano, A.: On the effective integration of manufacturability constraints within the multi-scale methodology for designing variable angle-tow laminates. Compos. Struct. 161, 145–159 (2017)

    Article  Google Scholar 

  9. Montemurro, M., Catapano, A.: A general B-Spline surfaces theoretical framework for optimisation of variable angle-tow laminates. Compos. Struct. 209, 561–578 (2019)

    Article  Google Scholar 

  10. Montemurro, M., Vincenti, A., Vannucci, P.: A two-level procedure for the global optimum design of composite modular structures–application to the design of an aircraft wing. Part 2: numerical aspects and examples. J. Optim. Theory Appl. 155(1), 24–53 (2012)

    Article  MathSciNet  Google Scholar 

  11. Catapano, A., Montemurro, M.: A multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part II: the optimisation strategy. Compos. Struct. 118, 677–690 (2014)

    Article  Google Scholar 

  12. Lukaszewicz, D.H.-J.A., Ward, C., Potter, K.D.: The engineering aspects of automated prepreg layup: history, present and future. Compos. Part B 43, 997–1009 (2012)

    Article  Google Scholar 

  13. ASTM F2792e12a.: Standard terminology for additive manufacturing technologies. ASTM International, West Conshohocken (2012)

  14. Kim, J., Creasy, T.S.: Selective laser sintering characteristics of nylon 6/clayreinforced nanocomposite. Polym. Test. 23, 629–636 (2004)

    Article  Google Scholar 

  15. Klosterman, D., Chartoff, R., Graves, G., Osborne, N., Priore, B.: Interfacial characteristics of composites fabricated by laminated object manufacturing. Compos. Part A Appl. Sci. Manuf. 29, 1165–1174 (1998)

    Article  Google Scholar 

  16. Melchels, F.P., Feijen, J., Grijpma, D.W.: A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24), 6121–6130 (2010)

    Article  Google Scholar 

  17. Shofner, M.L., Lozano, K., Rodriguez-Marcias, F.J., Barrera, E.V.: Nanofiber-reinforced polymers prepared by fused deposition modeling. J. Appl. Polym. Sci. 89(11), 3081–3090 (2001)

    Article  Google Scholar 

  18. Ning, F., Cong, W., Qiu, J., Wei, J., Wang, S.: Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos. Part B 80, 369–378 (2015)

    Article  Google Scholar 

  19. Cho, W., Sachs, E.M., Patrikalakis, N.M., Troxel, D.E.: A dithering algorithm for local composition control with three-dimensional printing. Comput. Aid. Des. 355(9), 851–867 (2003)

    Article  Google Scholar 

  20. Kong, C.Y., Soar, R.C.: Fabrication of metal-matrix composites and adaptive composites using ultrasonic consolidation process. Mater. Sci. Eng. A 412(1–2), 12–8 (2005)

    Article  Google Scholar 

  21. Levy, G., Schindel, R., Kruth, J.P.: Rapid manufacturing and rapid tooling with layer manufacturing technologies: state of the art and future perspectives. CIRP Ann. 52(2), 589–609 (2003)

    Article  Google Scholar 

  22. Pham, D.T., Dimov, S.S., Ji, C., Gault, R.S.: Layer manufacturing processes: technology advances and research challenges. In: Proc. VRAP, Portugal, pp. 107–113 (2003)

  23. Kumar, S., Kruth, J.P.: Composites by rapid prototyping technology. Mater. Des. 31, 850–856 (2010)

    Article  Google Scholar 

  24. Wang, X., Jiang, M., Zhou, Z., Gou, J., Hui, D.: 3D printing of polymer matrix composites: a review and prospective. Compos. Part B 110, 442–458 (2017)

    Article  Google Scholar 

  25. Parandoush, P., Lin, D.: A review on additive manufacturing of polymer-fiber composites. Compos. Struct. 182, 36–53 (2017)

    Article  Google Scholar 

  26. Markforged Mark Two.: https://markforged.com/mark-two/

  27. Setoodeh, S., Abdalla, M., Gürdal, Z.: Design of variable-stiffness laminates using lamination parameters. Compos. Part B 37, 301–309 (2006)

    Article  Google Scholar 

  28. Montemurro, M., Catapano, A., Doroszewski, D.: A multi-scale approach for the simultaneous shape and material optimisation of sandwich panels with cellular core. Compos. Part B Eng. 91, 458–472 (2016)

    Article  Google Scholar 

  29. Montemurro, M.: An extension of the polar method to the first-order shear deformation theory of laminates. Compos. Struct. 127, 328–339 (2015)

    Article  Google Scholar 

  30. Montemurro, M.: Corrigendum to ”An extension of the polar method to the First-order Shear Deformation Theory of laminates” [Compos. Struct. 127 (2015) 328–339]. Compos. Struct. 131, 1143–1144 (2015)

    Article  Google Scholar 

  31. Montemurro, M.: The polar analysis of the third-order shear deformation theory of laminates. Compos. Struct. 131, 775–789 (2015)

    Article  Google Scholar 

  32. Piegl, L., Tiller, W.: The NURBS Book. Springer, Berlin (1997)

    Book  Google Scholar 

  33. Weaver, P., Potter, K., Hazra, K., Saverymuthapulle, M., Hawthorne, M.: Buckling of variable angle tow plates: from concept to experiment. In: 50th AIAA/ASME/ASCE/AHS/ASC. Palm Springs, California (2009)

  34. Setoodeh, S., Abdalla, M.M., Ijsselmuiden, S.T., Gürdal, Z.: Design of variable-stiffness composite panels for maximum buckling load. Compos. Struct. 87(1), 109–117 (2009)

    Article  Google Scholar 

  35. Reddy, J.N.: Mechanics of Composite Laminated Plates and Shells: Theory and Analysis. CRC Press, Boca Raton (2003)

    Google Scholar 

  36. Vannucci, P.: Plane anisotropy by the polar method. Meccanica 40(4–6), 437–454 (2005)

    Article  MathSciNet  Google Scholar 

  37. Vannucci, P.: A note on the elastic and geometric bounds for composite laminates. J. Elast. 112, 199–215 (2013)

    Article  MathSciNet  Google Scholar 

  38. Montemurro, M.: A contribution to the development of design strategies for the optimisation of lightweight structures. HDR Thesis, University of Bordeaux (2018)

  39. The MathWorks, Inc.: Optimization Toolbox User’s Guide. 3 Apple Ill Drive, Natick (2011)

  40. Montemurro, M., Vincenti, A., Vannucci, P.: The automatic dynamic penalisation method (ADP) for handling constraints with genetic algorithms. Comput. Methods Appl. Mech. Eng. 256, 70–87 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Catapano.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest related to the present manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catapano, A., Montemurro, M., Balcou, JA. et al. Rapid Prototyping of Variable Angle-Tow Composites. Aerotec. Missili Spaz. 98, 257–271 (2019). https://doi.org/10.1007/s42496-019-00019-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42496-019-00019-0

Keywords

Navigation