Skip to main content
Log in

Morbus Fabry in der Neurologie

Fabry disease in neurology

  • CME Zertifizierte Fortbildung
  • Published:
DGNeurologie Aims and scope

Zusammenfassung

Der M. Fabry ist eine vererbte, lysosomale Speichererkrankung mit klinischer Manifestation in vielen Organsystemen. In der Neurologie kann er seltene Ursache und Differenzialdiagnose häufiger Krankheitsbilder mit Symptomen des zentralen und/oder peripheren Nervensystems sein. Eine zeitnahe Diagnose und Therapie sind wichtig, um Symptome zu lindern, irreversible Organschäden zu vermeiden und letztlich Lebenserwartung und -qualität der Betroffenen zu verbessern.

Abstract

Fabry disease is an inherited lysosomal storage disorder with clinical manifestation in various organ systems. In neurology, Fabry disease is a rare cause and differential diagnosis of frequent disorders of central and peripheral nervous origin. Timely diagnosis and therapy are essential to improve symptoms and prevent irreversible organ damage and thereby increase life expectancy and quality of life for the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Zarate YA, Hopkin RJ (2008) Fabry’s disease. Lancet 372:1427–1435

    Article  CAS  PubMed  Google Scholar 

  2. Fabry J (1898) Ein Beitrag zur Kenntnis der Purpura haemorrhagica nodularis (Purpura papulosa haemorrhagica Hebrae). Arch Dermatol Syphilis 43:187–200

    Article  Google Scholar 

  3. Anderson W (1898) A case of “Angio-Keratoma”. Br J Dermatol 18:113–117

    Article  Google Scholar 

  4. Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–373

    Article  CAS  PubMed  Google Scholar 

  5. Beck M (2006) Demographics of FOS—the Fabry outcome survey. In: Mehta A, Beck M, Sunder-Plassmann G (Hrsg) Fabry disease: perspectives from 5 years of FOS. Oxford PharmaGenesis, Oxford (Chapter 16)

    Google Scholar 

  6. Ortiz A, Germain DP, Desnick RJ et al (2018) Fabry disease revisited: Management and treatment recommendations for adult patients. Mol Genet Metab 123:416–427

    Article  CAS  PubMed  Google Scholar 

  7. Cairns T, Muntze J, Gernert J et al (2018) Hot topics in Fabry disease. Postgrad Med J 94:709–713

    Article  CAS  PubMed  Google Scholar 

  8. Schäfer E, Baron K, Widmer U et al (2005) Thirty-four novel mutations of the GLA gene in 121 patients with Fabry disease. Hum Mutat 25:412

    Article  PubMed  Google Scholar 

  9. Germain DP (2010) Fabry disease. Orphanet J Rare Dis 5:30–78

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ries M, Gal A (2006) Genotype-phenotype correlation in Fabry disease. In: Mehta A, Beck M, Sunder-Plassmann G (Hrsg) Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis, Oxford (Chapter 34)

    Google Scholar 

  11. Schiffmann R, Ries M (2005) Fabry’s disease—an important risk factor for stroke. Lancet 366:1754–1756

    Article  PubMed  Google Scholar 

  12. Spada M, Pagliardini S, Yasuda M et al (2006) High incidence of later-onset Fabry disease revealed by newborn screening. Am J Hum Genet 79:31–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van der Tol L, Smid BE, Poorthuis BJ et al (2014) A systematic review on screening for Fabry disease: prevalence of individuals with genetic variants of unknown significance. J Med Genet 51:1–9

    Article  PubMed  CAS  Google Scholar 

  14. Laney DA, Fernhoff PM (2008) Diagnosis of Fabry disease via analysis of family history. J Genet Couns 17:79–83

    Article  PubMed  Google Scholar 

  15. Eng CM, Fletcher J, Wilcox WR et al (2007) Fabry disease: baseline medical characteristics of a cohort of 1765 males and females in the Fabry Registry. J Inherit Metab Dis 30:184–192

    Article  CAS  PubMed  Google Scholar 

  16. MacDermot KD, Holmes A, Miners AH (2001) Anderson-Fabry disease: clinical manifestations and impact of disease in a cohort of 98 hemizygous males. J Med Genet 38:750–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. MacDermot KD, Holmes A, Miners AH (2001) Anderson-Fabry disease: clinical manifestations and impact of disease in a cohort of 60 obligate carrier females. J Med Genet 38:769–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miners AH, Holmes A, Sherr L et al (2002) Assessment of health-related quality-of-life in males with Anderson Fabry Disease before therapeutic intervention. Qual Life Res 11:127–133

    Article  CAS  PubMed  Google Scholar 

  19. Lidove O, Jaussaud R, Aractingi S (2006) Dermatological and soft-tissue manifestations of Fabry disease: characteristics and response to enzyme replacement therapy. In: Mehta A, Beck M, Sunder-Plassmann G (Hrsg) Fabry disease: perspectives from 5 years of FOS. Oxford PharmaGenesis, Oxford (Chapter 24)

    Google Scholar 

  20. Larralde M, Boggio P, Amartino H et al (2004) Fabry disease: a study of 6 hemizygous men and 5 heterozygous women with emphasis on dermatologic manifestations. Arch Dermatol 140:1440–1446

    Article  PubMed  Google Scholar 

  21. Lao LM, Kumakiri M, Mima H et al (1998) The ultrastructural characteristics of eccrine sweat glands in a Fabry disease patient with hypohidrosis. J Dermatol Sci 18:109–117

    Article  CAS  PubMed  Google Scholar 

  22. Hilz MJ (2002) Evaluation of peripheral and autonomic nerve function in Fabry disease. Acta Paediatr Suppl 91:38–42

    Article  CAS  PubMed  Google Scholar 

  23. Köping M, Shehata-Dieler W, Schneider D et al (2018) Characterization of vertigo and hearing loss in patients with Fabry disease. Orphanet J Rare Dis 13:137–145

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sodi A, Ioannidis AS, Mehta A et al (2007) Ocular manifestations of Fabry’s disease: data from the Fabry Outcome Survey. Br J Ophthalmol 91:210–214

    Article  PubMed  Google Scholar 

  25. Pitz S, Grube-Einwald K, Renieri G et al (2009) Subclinical optic neuropathy in Fabry disease. Ophthalmic Genet 30:165–171

    Article  PubMed  Google Scholar 

  26. Hilz MJ, Arbustini E, Dagna L et al (2018) Non-specific gastrointestinal features: could it be Fabry disease? Dig Liver Dis 50:429–437

    Article  CAS  PubMed  Google Scholar 

  27. Linhart A (2006) The heart in Fabry disease. In: Mehta A, Beck M, Sunder-Plassmann G (Hrsg) Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis, Oxford (Chapter 20)

    Google Scholar 

  28. Tanislav C, Guenduez D, Liebetrau C et al (2016) Cardiac troponin I: a valuable biomarker indicating the cardiac involvement in Fabry disease. PLoS ONE 11:e157640

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Waldek S, Patel MR, Banikazemi M et al (2009) Life expectancy and cause of death in males and females with Fabry disease: findings from the Fabry Registry. Genet Med 11:790–796

    Article  PubMed  Google Scholar 

  30. Branton MH, Schiffmann R, Sabnis SG et al (2002) Natural history of Fabry renal disease: influence of alpha-galactosidase A activity and genetic mutations on clinical course. Medicine 81:122–138

    Article  CAS  PubMed  Google Scholar 

  31. Del Pino M, Andrés A, Bernabéu AÁ et al (2018) Fabry Nephropathy: An Evidence-Based Narrative Review. Kidney Blood Press Res 43:406–421

    Article  PubMed  CAS  Google Scholar 

  32. Cybulla M et al (2005) Chronic renal failure and proteinuria in adulthood: Fabry disease predominantly affecting the kidneys. Am J Kidney Dis 45(5):E82–E89

    Article  PubMed  Google Scholar 

  33. Hoffmann B, Mayatepek E (2009) Fabry Disease-often seen, rarely diagnosed. Dtsch Arztebl Int 106:440–472

    PubMed  PubMed Central  Google Scholar 

  34. Fellgiebel A, Müller MJ, Ginsberg L (2006) CNS manifestations of Fabry’s disease. Lancet Neurol 5:791–795

    Article  PubMed  Google Scholar 

  35. Fellgiebel A, Wolf DO, Kolodny E et al (2012) Hippocampal atrophy as a surrogate of neuronal involvement in Fabry disease. J Inherit Metab Dis 35:363–367

    Article  PubMed  Google Scholar 

  36. Barbey F, Brakch N, Linhart A et al (2006) Increased carotid intima-media thickness in the absence of atherosclerotic plaques in an adult population with Fabry disease. Acta Paediatr Suppl 95:63–68

    Article  PubMed  Google Scholar 

  37. Rombach SM, Twickler TB, Aerts JM et al (2010) Vasculopathy in patients with Fabry disease: current controversies and research directions. Mol Genet Metab 99:99–108

    Article  CAS  PubMed  Google Scholar 

  38. Böttcher T, Rolfs A, Tanislav C et al (2013) Fabry disease—underestimated in the differential diagnosis of multiple sclerosis? Plos One 8:e71894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Lidove O, Chauveheid MP, Caillaud C et al (2009) Aseptic meningitis and ischaemic stroke in Fabry disease. Int J Clin Pract 63:1663–1667

    Article  CAS  PubMed  Google Scholar 

  40. Sims K, Politei J, Banikazemi M et al (2009) Stroke in Fabry disease frequently occurs before diagnosis and in the absence of other clinical events: natural history data from the Fabry Registry. Stroke 40:788–794

    Article  PubMed  Google Scholar 

  41. Moore DF, Herscovitch P, Schiffmann R (2001) Selective arterial distribution of cerebral hyperperfusion in Fabry disease. J Neuroimaging 11:303–307

    Article  CAS  PubMed  Google Scholar 

  42. Mehta A, Ginsberg L (2005) Natural history of the cerebrovascular complications of Fabry disease. Acta Paediatr Suppl 94:24–27

    Article  CAS  PubMed  Google Scholar 

  43. Kolodny E, Fellgiebel A, Hilz MJ et al (2015) Cerebrovascular involvement in Fabry disease: current status of knowledge. Stroke 46:302–313

    Article  PubMed  Google Scholar 

  44. Schiffmann R, Moore D (2006) Nervous system manifestations of Fabry disease. In: Mehta A, Beck M, Sunder-Plassmann G (Hrsg) Fabry disease: perspectives from 5 years of FOS. Oxford PharmaGenesis, Oxford (Chapter 22)

    Google Scholar 

  45. Rolfs A, Fazekas F, Grittner U et al (2013) Acute cerebrovascular disease in the young: the stroke in Young Fabry Patients study. Stroke 44:340–349

    Article  PubMed  Google Scholar 

  46. Desnik RJ, Bishop DF (1989) Fabry’s disease: Alpha-Galactosidase deficiency. In: Scriver CR, Beaudet AL, Sly WS, al (Hrsg) The metabolic basis of inherited disease. McGraw-Hill,, New York, S 1699–1720

    Google Scholar 

  47. Sigmundsdottir L, Tchan MC, Knopman AA et al (2014) Cognitive and psychological functioning in Fabry disease. Arch Clin Neuropsychol 29:642–650

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cole AL, Lee PJ, Hughes DA et al (2007) Depression in adults with Fabry disease: a common and under-diagnosed problem. J Inherit Metab Dis 30:943–951

    Article  CAS  PubMed  Google Scholar 

  49. Schiffmann R (2006) Neuropathy and Fabry disease: pathogenesis and enzyme replacement therapy. Acta Neurol Belg 106:61–65

    PubMed  Google Scholar 

  50. Sommer C, Üçeyler N (2018) Small-Fiber-Neuropathien. Fortschr Neurol Psychiatr 86:509–518

    Article  PubMed  Google Scholar 

  51. Hoffmann B, Beck M, Sunder-Plassmann G et al (2007) Nature and prevalence of pain in Fabry disease and its response to enzyme replacement therapy—a retrospective analysis from the Fabry Outcome Survey. Clin J Pain 23:535–542

    Article  PubMed  Google Scholar 

  52. Miller JJ, Aoki K, Moehring F et al (2018) Neuropathic pain in a Fabry disease rat model. JCI Insight 3:e99171

    Article  PubMed Central  Google Scholar 

  53. Choi L, Vernon J, Kopach O et al (2015) The Fabry disease-associated lipid Lyso-Gb3 enhances voltage-gated calcium currents in sensory neurons and causes pain. Neurosci Lett 594:163–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Burlina AP, Sims KB, Politei JM et al (2011) Early diagnosis of peripheral nervous system involvement in Fabry disease and treatment of neuropathic pain: the report of an expert panel. BMC Neurol 11:61–80

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mehta A, Ricci R, Widmer U et al (2004) Fabry disease defined: baseline clinical manifestations of 366 patients in the Fabry Outcome Survey. Eur J Clin Invest 34:236–242

    Article  CAS  PubMed  Google Scholar 

  56. Üçeyler N, Ganendiran S, Kramer D et al (2014) Characterization of pain in Fabry disease. Clin J Pain 30:915–920

    Article  PubMed  Google Scholar 

  57. Arning K, Naleschinski D, Maag R et al (2012) FabryScan: a screening tool for early detection of Fabry disease. J Neurol 259:2393–2400

    Article  PubMed  Google Scholar 

  58. Bundesministerium für Justiz (2009) Gesetz über genetische Untersuchungen beim Menschen (Gendiagnostikgesetz). Bundesgesetzblatt 50:2529–2538

    Google Scholar 

  59. Vardarli I, Rischpler C, Hermann K et al (2020) Diagnosis and screening of patients with Fabry disease. Ther Clin Risk Manag 16:551–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schiffmann R, Fuller M, Clarke LA et al (2016) Is it Fabry disease? Genet Med 18:1181–1185

    Article  CAS  PubMed  Google Scholar 

  61. Winchester B, Young E (2006) Biochemical und genetic diagnosis of Fabry disease. In: Mehta A, Beck M, Sunder-Plassmann G (Hrsg) Fabry disease: perspectives from 5 years of FOS. Oxford PharmaGenesis, Oxford (Chapter 18)

    Google Scholar 

  62. Linthorst GE, Vedder AC, Aerts JM et al (2005) Screening for Fabry disease using whole blood spots fails to identify one-third of female carriers. Clin Chim Acta 353:201–203

    Article  CAS  PubMed  Google Scholar 

  63. Lu YH, Huang PH, Wang LY et al (2018) Improvement in the sensitivity of newborn screening for Fabry disease among females through the use of a high-throughput and cost-effective method, DNA mass spectrometry. J Hum Genet 63:1–8

    Article  CAS  PubMed  Google Scholar 

  64. Reisin R, Perrin A, García-Pavía P (2017) Time delays in the diagnosis and treatment of Fabry disease. Int J Clin Pract 71:e12914

    Article  Google Scholar 

  65. Mehta A, Beck M, Eyskens F et al (2010) Fabry disease: a review of current management strategies. QJM 103:641–659

    Article  CAS  PubMed  Google Scholar 

  66. Niemann M, Rolfs A, Störk S et al (2014) Gene mutations versus clinically relevant phenotypes: lyso-Gb3 defines Fabry disease. Circ Cardiovasc Genet 7:8–16

    Article  CAS  PubMed  Google Scholar 

  67. van Breemen MJ, Rombach SM, Dekker N et al (2011) Reduction of elevated plasma globotriaosylsphingosine in patients with classic Fabry disease following enzyme replacement therapy. Biochim Biophys Acta 1812:70–76

    Article  PubMed  CAS  Google Scholar 

  68. Eng CM, Guffon N, Wilcox WR et al (2001) International collaborative Fabry disease study group. Safety and efficacy of recombinant human alpha-galactosidase a replacement therapy in Fabry’s disease. N Engl J Med 345:9–16

    Article  CAS  PubMed  Google Scholar 

  69. Schiffmann R, Kopp JB, Austin HA 3rd et al (2001) Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA 285:2743–2749

    Article  CAS  PubMed  Google Scholar 

  70. Banikazemi M, Bultas J, Waldek S et al (2007) Agalsidase-beta therapy for advanced Fabry disease: a randomized trial. Ann Intern Med 146:77–86

    Article  PubMed  Google Scholar 

  71. Mehta A, Beck M, Elliott P et al (2009) Enzyme replacement therapy with agalsidase alfa in patients with Fabry’s disease: an analysis of registry data. Lancet 374:1986–1996

    Article  CAS  PubMed  Google Scholar 

  72. Watt T, Burlina AP, Cazzorla C et al (2010) Agalsidase beta treatment is associated with improved quality of life in patients with Fabry disease: findings from the Fabry Registry. Genet Med 12:703–712

    Article  CAS  PubMed  Google Scholar 

  73. Beck M, Ricci R, Widmer U et al (2004) Fabry disease: overall effects of agalsidase alfa treatment. Eur J Clin Invest 34:838–844

    Article  CAS  PubMed  Google Scholar 

  74. Beck M, Hughes D, Kampmann C et al (2015) Long-term effectiveness of agalsidase alfa enzyme replacement in Fabry disease: a Fabry Outcome Survey analysis. Mol Genet Metab Rep 3:21–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Germain DP, Hughes DA, Nicholls K et al (2016) Treatment of Fabry’s disease with the pharmacologic chaperone migalastat. N Engl J Med 375:545–555

    Article  CAS  PubMed  Google Scholar 

  76. Lenders M, Nordbeck P, Kurschat C et al (2020) Treatment of Fabry’s disease with migalastat: outcome from a prospective observational multicenter study (FAMOUS). Clin Pharmacol Ther 108:326–337

    Article  CAS  PubMed  Google Scholar 

  77. Hughes DA, Nicholls K, Shankar SP et al (2017) Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study. J Med Genet 54:288–296

    Article  CAS  PubMed  Google Scholar 

  78. Banikazemi M, Ullman T, Desnick RJ (2005) Gastrointestinal manifestations of Fabry disease: clinical response to enzyme replacement therapy. Mol Genet Metab 85:255–259

    Article  CAS  PubMed  Google Scholar 

  79. Schiffmann R, Floeter MK, Dambrosia JM et al (2003) Enzyme replacement therapy improves peripheral nerve and sweat function in Fabry disease. Muscle Nerve 28:703–710

    Article  CAS  PubMed  Google Scholar 

  80. Wilcox WR, Banikazemi M, Guffon N et al (2004) Long-term safety and efficacy of enzyme replacement therapy for Fabry disease. Am J Hum Genet 75:65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schiffmann R, Moore DF (2006) Neurological effects of enzyme replacement therapy in Fabry disease. In: Mehta A, Beck M, Sunder-Plassmann G (Hrsg) Fabry disease: perspectives from 5 years of FOS. Oxford PharmaGenesis, Oxford (Chapter 39)

    Google Scholar 

  82. Sunder-Plassmann G, Shankar S, Wilcox W et al (2019) Occurrence of cerebrovascular events during long-term treatment with migalastat in patients with Fabry disease. Presented at the 15th Annual WORLD Symposium™, Orlando, February 4–8 (Poster LB-49)

    Google Scholar 

  83. Cabrera G, Politei J, Antongiovani N et al (2017) Effectiveness of enzyme replacement therapy in Fabry disease: long term experience in Argentina. Mol Genet Metab Rep 11:65–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Moore DF, Scott LT, Gladwin MT et al (2001) Regional cerebral hyperperfusion and nitric oxide pathway dysregulation in Fabry disease: reversal by enzyme replacement therapy. Circulation 104:1506–1512

    Article  CAS  PubMed  Google Scholar 

  85. Laney DA, Bennett RL, Clarke V et al (2013) Fabry disease practice guidelines: recommendations of the National Society of Genetic Counselors. J Genet Couns 22:555–564

    Article  PubMed  Google Scholar 

  86. Wanner C, Arad M, Baron R et al (2018) European expert consensus statement on therapeutic goals in Fabry disease. Mol Genet Metab 124:189–203

    Article  CAS  PubMed  Google Scholar 

  87. Hughes DA, Evans S, Milligan A et al (2006) A multidisciplinary approach to the care of patients with Fabry disease. In: Mehta A, Beck M, Sunder-Plassmann G (Hrsg) Fabry disease: perspectives from 5 years of FOS. Oxford PharmaGenesis, Oxford (Chapter 35)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Böttcher.

Ethics declarations

Interessenkonflikt

Gemäß den Richtlinien des Springer Medizin Verlags werden Autoren und Wissenschaftliche Leitung im Rahmen der Manuskripterstellung und Manuskriptfreigabe aufgefordert, eine vollständige Erklärung zu ihren finanziellen und nichtfinanziellen Interessen abzugeben.

Autoren

T. Böttcher: A. Finanzielle Interessen: Vortragshonorare und Reisekostenerstattung: Takeda, Sanofi-Genzyme, Amicus, Centogene. – Beratungstätigkeit: Takeda, Sanofi-Genzyme, Amicus, Beratungstätigkeit, interner Schulungsreferent, Angestellter 01–06/2017: Centogene, interner Schulungsreferent: „infusion at home“. – Aktien: Centogene. – B. Nichtfinanzielle Interessen: Chefarzt, Klinik für Neurologie, Neubrandenburg, bis 12/2016, „Senior Director Medical Processes“, Centogene AG, Rostock, 01–06/2017, angestellter Facharzt für Neurologie, MVZ der Johanna-Odebrecht-Stiftung, Greifswald, seit 07/2017 | Mitgliedschaften: Deutsche Gesellschaft für Neurologie (DGN), Deutsche Gesellschaft für klinische Neurophysiologie, Deutsche Gesellschaft für Liquordiagnostik, Vorsitzender der Gesellschaft für Nervenheilkunde Mecklenburg-Vorpommern. T. Duning: A. Finanzielle Interessen: Forschungsgelder: Genzyme, Shire, Actelion, finanzielle Unterstützung zur Durchführung von Demenzstudien: Novartis, Merz Pharma. – Kongressgebühren, Reisekostenerstattung und Vortragshonorare: Genzyme, Shire, Bristol-Myers Squibb, Boehringer-lngelheim Pharma, Sanofi Aventis, Wisai, Novartis, Bayer Vital, Merz Pharma, Merck, Actelion, Lundbeck, Chiesi. – Beraterhonorare: Genzyme, Shire, Sanofi Aventis, Wisai, Novartis, Merz Pharma, Actelion, Chiesi, Roche. – B. Nichtfinanzielle Interessen: Chefarzt, Klinik für Neurologie, Klinikum Bremen-Ost | Mitgliedschaften: DGN, DSG (Deutsche Schlaganfall-Gesellschaft), DGKN.

Wissenschaftliche Leitung

Die vollständige Erklärung zum Interessenkonflikt der Wissenschaftlichen Leitung finden Sie am Kurs der zertifizierten Fortbildung auf www.springermedizin.de/cme.

Der Verlag

erklärt, dass für die Publikation dieser CME-Fortbildung keine Sponsorengelder an den Verlag fließen.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Wissenschaftliche Leitung

D. Berg, Kiel

M. Krämer, Essen

H.C. Lehmann, Köln

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Böttcher, T., Duning, T. Morbus Fabry in der Neurologie. DGNeurologie 4, 205–215 (2021). https://doi.org/10.1007/s42451-021-00339-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42451-021-00339-1

Schlüsselwörter

Keywords

Navigation