Skip to main content
Log in

Effect of W on formation and properties of precipitates in Ni-based superalloys

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The formation and properties of precipitates in wrought Ni-based superalloys with different W contents during long-term exposure to high temperatures were investigated. The scanning electron microscope, transmission electron microscope, and chemical phase analysis were used to investigate the formation and properties of precipitates. It is found that with increasing W content, the quantity and thermal stability of MC carbide in Ni-based superalloys increased, while the quantity of M23C6 carbides decreased. As the results show, W has a higher partition coefficient in γ′- and γ-matrix, and the addition of W promotes the precipitation of γ′ phase. W content has no significant effect on the morphology, size, crystal structure, and coarsening rate of γ′ precipitates. The influence of W content on high-temperature tensile and creep properties of the alloys was investigated. The results showed that W content has no obvious influence on the high-temperature yield strength, but the elongation and area reduction decreased significantly when the addition of W was more than 4 wt.%. Because of the similar volume fractions of γ′ phase, the creep fracture strengths in the tested alloys with lower W concentrations were not significantly different after long-term exposure at 700 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. P.D. Jablonski, J.A. Hawk, C.J. Cowen, P.J. Maziasz, JOM 64 (2012) 271–279.

    Article  Google Scholar 

  2. A.J. Brand, K. Karhausen, R. Kopp, Mater. Sci. Technol. 12 (1996) 963–969.

    Article  Google Scholar 

  3. F. Abe, H. Kutsumi, H. Haruyama, H. Okubo, Corros. Sci. 114 (2017) 1–9.

    Article  Google Scholar 

  4. Z. Yao, J. Dong, M. Zhang, Acta Metall. Sin. 12 (2011) 1581–1590.

    Google Scholar 

  5. Z. Li, S.L. Gobbi, F. Bonollo, A. Tiziani, G. Fontana, Sci. Technol. Weld. Join. 3 (1998) 1–7.

    Article  Google Scholar 

  6. S.L. Semiatin, P.N. Fagin, M.G. Glavicic, D. Raabe, Scripta Mater. 50 (2004) 625–629.

    Article  Google Scholar 

  7. V.S.K.G. Kelekanjeri, R.A. Gerhardt, Acta Mater. 57 (2009) 616–627.

    Article  Google Scholar 

  8. Z. Yao, M. Zhang, J. Dong, Metall. Mater. Trans. A 44 (2013) 3084–3098.

    Article  Google Scholar 

  9. V.S.K.G. Kelekanjeri, L.K. Moss, R.A. Gerhardt, J. Ilavsky, Acta Mater. 57 (2009) 4658–4670.

    Article  Google Scholar 

  10. H.S. Bao, G. Yang, Z.Z. Chen, Z.D. Liu, J. Iron Steel Res. Int. 27 (2020) 477–487.

    Article  Google Scholar 

  11. G. Lvov, V.I. Levit, M.J. Kaufman, Metall. Mater. Trans. A 35 (2004) 1669–1679.

    Article  Google Scholar 

  12. A.K. Koul, R. Castillo, Metall. Trans. A 19 (1988) 2049–2066.

    Article  Google Scholar 

  13. W. Sun, X. Qin, J. Guo, L. Lou, L. Zhou, Mater. Des. 69 (2015) 81–88.

    Article  Google Scholar 

  14. J. Wang, L. Zhou, X. Qin, L. Sheng, J. Hou, J. Guo, Mater. Sci. Eng. A 553 (2012) 14–21.

    Article  Google Scholar 

  15. R. Popp, S. Haas, F. Scherm, A. Redermeier, E. Povoden-Karadeniz, T. Göohler, U. Glatzel, J. Alloy. Compd. 788 (2019) 67–74.

    Article  Google Scholar 

  16. C.J. Park, M.K. Ahn, H.S. Kwon, Mater. Sci. Eng. A 418 (2006) 211–217.

    Article  Google Scholar 

  17. J. Zhao, V. Ravikumar, A.M. Beltran, Metall. Mater. Trans. A 32 (2001) 1271–1282.

    Article  Google Scholar 

  18. X. Qin, J. Guo, C. Yuan, J. Hou, H. Ye, Mater. Lett. 62 (2008) 258–261.

    Article  Google Scholar 

  19. M. Aghaie-Simonetti, M. Hajjavady, Mater. Sci. Eng. A 487 (2008) 388–393.

    Article  Google Scholar 

  20. Y. Amouyal, Z. Mao, D.N. Seidman, Acta Mater. 58 (2010) 5898–5911.

    Article  Google Scholar 

  21. Z.H. Gong, G. Yang, H.S. Bao, H.F. Yin, Rare Metal Mater. Eng. 48 (2019) No. 4, 257–263.

    Google Scholar 

  22. I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids 19 (1961) 35–50.

    Article  Google Scholar 

  23. C. Wagner, Z. Electrochem. 65 (1961) 581–591.

    Google Scholar 

  24. F. Sun, Y. Gu, J.B. Yan, Y.X. Xu, Z.H. Zhong, M. Yuyama, J. Alloy. Compd. 687 (2016) 389–401.

    Article  Google Scholar 

  25. Z. Tian, S. Jiang, Z. Chen, H. Bao, Z. Liu, J. Iron Steel Res. Int. 24 (2017) 513–519.

    Article  Google Scholar 

  26. Y.C. Lin, J. Deng, Y.Q. Jiang, D.X. Wen, G. Liu, Mater. Sci. Eng. A 598 (2014) 251–262.

    Article  Google Scholar 

  27. Y.C. Lin, L.X. Yin, S.C. Luo, D.G. He, X.B. Peng, Adv. Eng. Mater. 20 (2018) 1700820.

    Article  Google Scholar 

  28. B. Reppich, P. Schepp, G. Wehner, Acta Metall. 30 (1982) 95–104.

    Article  Google Scholar 

  29. B. Reppich, Acta Metall. 30 (1982) 87–94.

    Article  Google Scholar 

  30. Z. Gong, H. Bao, G. Yang, Metals 9 (2019) 298.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Key Research and Develop Program, China (No. 2017YFB0305203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-hua Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Zh., Ma, Yy., Bao, Hs. et al. Effect of W on formation and properties of precipitates in Ni-based superalloys. J. Iron Steel Res. Int. 28, 910–919 (2021). https://doi.org/10.1007/s42243-021-00562-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00562-w

Keywords

Navigation