Skip to main content

Advertisement

Log in

Performance Limit Evaluation Strategy for Automated Driving Systems

  • Published:
Automotive Innovation Aims and scope Submit manuscript

Abstract

Efficient detection of performance limits is critical to autonomous driving. As autonomous driving is difficult to be realized under complicated scenarios, an improved genetic algorithm-based evolution test is proposed to accelerate the evaluation of performance limits. It conducts crossover operation at all positions and mutation several times to make the high-quality chromosome exist in candidate offspring easily. Then the normal offspring is selected statistically based on the scenario complexity, which is designed to measure the difficulty of realizing autonomous driving through the Analytic Hierarchy Process. The benefits of modified cross/mutation operators on the improvement of scenario complexity are analyzed theoretically. Finally, the effectiveness of improved genetic algorithm-based evolution test is validated after being applied to evaluate the collision avoidance performance of an automatic parallel parking system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AEB:

Automatic emergency baking

AHP:

Analytic hierarchy process

APPS:

Automatic parallel parking system

APS:

Automated parking system

GA:

Genetic algorithm

IGA:

Improved genetic algorithm

ISO:

International standard organization

References

  1. Gao, F., Dang, D., He, Y.: Robust coordinated control of nonlinear heterogeneous platoon interacted by uncertain topology. IEEE Trans. Intell. Transp. Syst. (2020). https://doi.org/10.1109/TITS.2020.3045107

    Article  Google Scholar 

  2. Dang, D., Gao, F., Hu, Q.: Motion planning for autonomous vehicles considering longitudinal and lateral dynamics coupling. Appl. Sci. 10(9), 3180 (2020). https://doi.org/10.3390/app10093180

    Article  Google Scholar 

  3. Li, L., Huang, W., Liu, Y., Zheng, N., Wang, F.: Intelligence testing for autonomous vehicles: a new approach. IEEE Trans. Intell. Veh. 1(2), 158–166 (2016)

    Article  Google Scholar 

  4. Morton, J., Wheeler, T.A., Kochenderfer, M.J.: Closed-loop policies for operational tests of safety-critical systems. IEEE Trans. Intell. Veh. 3(3), 317–328 (2018)

    Article  Google Scholar 

  5. Tumasov, A.V., Vashurin, A.S., Trusov, Y.P.: The application of hardware-in-the-loop (HIL) simulation for evaluation of active safety of vehicles equipped with electronic stability control (ESC) systems. Proc. Comput. Sci. 150, 309–315 (2019). https://doi.org/10.1016/j.procs.2019.02.057

    Article  Google Scholar 

  6. i-VISTA: i-VISITA intelligent vehicle index. https://www.i-vista.org/download (2020). Accessed 04 March 2021

  7. Woo, J.W., Yu, S.B., Lee, S.B.: Design and simulation of a vehicle test bed based on intelligent transport system. Int. J. Automot. Technol. 17(2), 353–359 (2016)

    Article  Google Scholar 

  8. Berger, C., Block, D., Heeren, S.: Simulations on consumer tests: a systematic evaluation approach in an industrial case study. IEEE Intell. Transp. Syst. Mag. 7(4), 24–36 (2015)

    Article  Google Scholar 

  9. Hannan, M.A., Lipu, M.S.H., Hussain, A., Mohamed, A.: A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations. Renew. Sust. Energ. Rev. 78, 834–854 (2017). https://doi.org/10.1016/j.rser.2017.05.001

    Article  Google Scholar 

  10. Zhao, D., Lam, H., Peng, H.: Accelerated evaluation of automated vehicles safety in lane-change scenarios based on importance sampling techniques. IEEE Trans. Intell. Transp. Syst. 18(3), 595–607 (2017)

    Article  Google Scholar 

  11. Perez, M., Angell, L. S., Hankey, J.: Advanced crash avoidance technologies (ACAT) program—final report of the GM-VTTI backing crash countermeasures project. Natural Highway Traffic Safety Admin. (NHTSA), Washington, DC, USA, DOT HS 811 452, (2011)

  12. Victor, T., Bärgman, J., Hjälmdahl, M.: Sweden-Michigan naturalistic field operational test (SeMiFOT) phase 1: final report. Chalmers, Goteborg, Sweden, (2010)

  13. Burzio, G., Guidotti, L., Perboli, G.: Results and lessons learned of a subjective field operational test on the lane departure warning function. Proc. Soc. Behav. Sci. 48, 1356–1365 (2012). https://doi.org/10.1016/j.sbspro.2012.06.1111

    Article  Google Scholar 

  14. Hou, Y., Zhao, Y., Wagh, A.: Simulation-based testing and evaluation tools for transportation cyber–physical systems. IEEE Trans. Veh. Technol. 65(3), 1098–1108 (2016)

    Article  Google Scholar 

  15. Yang, H., Peng, H.: Development and evaluation of collision warning/collision avoidance algorithms using an errable driver model. Veh. Syst. Dyn. 48(sup 1), 525–535 (2010)

    Article  Google Scholar 

  16. Kang, Y., Yin, H., Berger, C.: Test your self-driving algorithm: an overview of publicly available driving datasets and virtual testing environments. IEEE Trans. Intell. Veh. 4(2), 171–185 (2019)

    Article  Google Scholar 

  17. Gao, F., Duan, J., He, Y., Wang, Z.: A test scenario automatic generation strategy for intelligent driving systems. Math. Probl. Eng. 3737486, 1–10 (2019). https://doi.org/10.1155/2019/3737486

    Article  Google Scholar 

  18. Xia, Q., Duan, J., Gao, F.: Test scenario design for intelligent driving system ensuring coverage and effectiveness. Int. J. Automot. Technol. 19(4), 751–758 (2018)

    Article  Google Scholar 

  19. Zhao, D., Huang, X., Peng, H.: Accelerated evaluation of automated vehicles in car-following maneuvers. IEEE Trans. Intell. Transp. Syst. 19(3), 733–744 (2018)

    Article  Google Scholar 

  20. Wu, P., Gao, F., Li, K.: A vehicle type dependent car-following model based on naturalistic driving study. Electronics 8(4), 453–468 (2019)

    Article  Google Scholar 

  21. Duan, J., Gao, F., He, Y.: Test scenario generation and optimization technology for intelligent driving systems. IEEE Intell. Transp. Syst. Mag. (2020). https://doi.org/10.1109/MITS.2019.2926269

    Article  Google Scholar 

  22. Gao, F., Duan, J., Han, Z.: Automatic virtual test technology for intelligent driving systems considering both coverage and efficiency. IEEE Trans. Vehic. Technol. 69(12), 14365–14376 (2020)

    Article  Google Scholar 

  23. Vos, T.E.J., Lindlar, F.F., Wilmes, B.: Evolutionary functional black-box testing in an industrial setting. Softw. Qual. J. 21(2), 259–288 (2013)

    Article  Google Scholar 

  24. Wegener, J., Bühler, O.: Evaluation of different fitness functions for the evolutionary testing of an autonomous parking system. In: Genetic and Evolutionary Computation Conference, Seattle, USA, pp 1400–1412 (2004)

  25. Li, J., Li, M.: An analysis on convergence and convergence rate estimate of genetic algorithms in noisy environments. Optik 124(24), 6780–6785 (2013)

    Article  Google Scholar 

  26. Saaty, T.L.: Axiomatic foundation of the analytic hierarchy process. Manage. Sci. 32(7), 841–855 (1986)

    Article  MathSciNet  Google Scholar 

  27. Wind, Y., Saaty, T.L.: Marketing applications of the analytic hierarchy process. Manage. Sci. 26(7), 641–658 (1980)

    Article  Google Scholar 

  28. Ishizaka, A., Labib, A.: Review of the main developments in the analytic hierarchy process. Exp. Syst. Appl. 38(11), 14336–14345 (2011)

    Google Scholar 

  29. Barhate, S. S.: Effective test strategy for testing automotive software. In: International Conference on Industrial Instrumentation and Control, Pune, India, 645–649, 28–30 July 2015

  30. Rudolph, G.: Convergence analysis of canonical genetic algorithms. IEEE Trans. Neural Netw. 5(1), 96–101 (1994)

    Article  Google Scholar 

  31. Peng, Y., Luo, X., Wei, W.: A new fuzzy adaptive simulated annealing genetic algorithm and its convergence analysis and convergence rate estimation. Int. J. Control Autom. Syst. 12(3), 670–679 (2014)

    Article  Google Scholar 

  32. Bao, X., Xiong, Z., Zhang, N.: Path-oriented test cases generation based adaptive genetic algorithm. PLoS ONE 12(11), 1–17 (2017)

    Google Scholar 

  33. Wang, X.: Study on the key technologies of automatic parking system. Dissertation, Chongqing University (2019).

Download references

Acknowledgments

This work is supported by the Open Fund of State Key Laboratory of Vehicle NVH and Safety Technology under Grant NVHSKL-202009 and the Technological Plans of Chongqing under grant cstc2019jcyj-zdxm0022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Gao.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Academic editor: Shuo Feng

Appendix 1 Definitions and Proofs

Appendix 1 Definitions and Proofs

1.1 Definition of Symbols

\({g}_{i}\): The objective function value corresponding to \({{\varvec{T}}}_{i}\);

\({g}_{\mathrm{th}}\): The threshold of the objective function value;

G: The generation of population;

\({G}_{\mathrm{th}}\): The maximum number of interaction test process;

\({{\varvec{P}}}_{i}^{\mathrm{C}}\): The i-th parent individual pair in the natural selected population \({{\varvec{X}}}^{\mathrm{S}}\) from \({{\varvec{X}}}_{G}\);

\({{\varvec{P}}}_{i,j}^{\mathrm{C}}\): The offspring pair generated by single-point crossover at the j-th position of \({{\varvec{P}}}_{i}^{\mathrm{C}}\);

\({{\varvec{P}}}_{i}^{\mathrm{C}\boldsymbol{*}}\): The selected offspring pair from \({{\varvec{P}}}_{i,j}^{\mathrm{C}},\boldsymbol{ }j=1,\cdots ,L\), where \(L\) is the number of genes;

\({{\varvec{T}}}^{*}\): The best test case evaluated by \({g}_{i}\), and its objective function value is \({g}^{*}\);

\({{\varvec{X}}}_{G}=\left\{{{\varvec{T}}}_{i},i=1,\cdots ,2m\right\}\): The G-th population compose of 2 m individuals;

\({{\varvec{X}}}^{\mathrm{C}}=\left\{{{\varvec{P}}}_{1}^{\mathrm{C}*},\cdots ,{{\varvec{P}}}_{m}^{\mathrm{C}*}\right\}\): The offspring population generated by crossover operation;

\({{\varvec{X}}}_{i}^{\mathrm{M}}\): The population generated by conducting the i-th mutation on \({{\varvec{X}}}^{\mathrm{C}}\);

\({{\varvec{X}}}^{\mathrm{M}*}\): The selected population from \({{\varvec{X}}}_{i}^{\mathrm{M}},\boldsymbol{ }i=1,\cdots ,N\), where \(N\) is the mutation times.

\(\overline{D}\left( {\mathbf{X}} \right) = \frac{1}{n}\sum\limits_{{i{ = 1}}}^{n} {D\left( {{\varvec{T}}_{i} } \right)}\): The average complexity of a population \({\mathbf{X}} = \left\{ {{\varvec{T}}_{1} ,{\varvec{T}}_{2} , \ldots ,{\varvec{T}}_{n} } \right\}\);

\({P}_{\mathrm{r}}\left(\bullet \right)\): The occurrence probability of an event.

1.2 Proof of Theorem 1

From Eqs. (4) and (5):

$$E\left(\overline{D }\left(C\left({{\varvec{P}}}_{i}^{\mathrm{C}}\right)\right)\right)-E\left(\overline{D }\left(\widehat{C}\left({{\varvec{P}}}_{i}^{\mathrm{C}}\right)\right)\right)=\sum_{j=1}^{L}\left({D}_{i,j}^{\mathrm{C}}-\frac{{p}_{\mathrm{C}}}{L}\right)\overline{D }\left({{\varvec{P}}}_{i,j}^{\mathrm{C}}\right)-(1-{p}_{\mathrm{C}}){\overline{D }({\varvec{P}}}_{i}^{\mathrm{C}}),$$
(11)

where \(D_{i,j}^{C} = e^{{d \times \overline{D}\left( {P_{i,j}^{C} } \right)}} /\sum\limits_{k = 1}^{L} {e^{{d \times \overline{D}\left( {P_{i,j}^{C} } \right)}} }\) is the normalized complexity of \({\varvec{P}}_{i,j}^{C}\). According to whether the full crossover can increase the complexity of offspring, Eq. (11) can be re-written as

$$E\left(\overline{D }\left(C\left({{\varvec{P}}}_{i}^{\mathrm{C}}\right)\right)\right)-E\left(\overline{D }\left(\widehat{C}\left({{\varvec{P}}}_{i}^{\mathrm{C}}\right)\right)\right)=\sum_{j\in {\Omega }_{+}^{\mathrm{C}}}\left({D}_{i,j}^{\mathrm{C}}-\frac{{p}_{\mathrm{C}}}{L}\right)\overline{D }\left({{\varvec{P}}}_{i,j}^{\mathrm{C}}\right)+\sum_{j\in {\Omega }_{-}^{\mathrm{C}}}\left({D}_{i,j}^{\mathrm{C}}-\frac{{p}_{\mathrm{C}}}{L}\right)\overline{D }\left({{\varvec{P}}}_{i,j}^{\mathrm{C}}\right)-(1-{p}_{\mathrm{C}}){\overline{D }({\varvec{P}}}_{i}^{\mathrm{C}})\ge \underset{j\in {\Omega }_{+}^{\mathrm{C}}}{\mathrm{min}}\left(\overline{D }\left({{\varvec{P}}}_{i,j}^{\mathrm{C}}\right)\right)\sum_{j\in {\Omega }_{+}^{C}}\left({D}_{i,j}^{\mathrm{C}}-\frac{{p}_{\mathrm{C}}}{L}\right)+\underset{j\in {\Omega }_{-}^{\mathrm{C}}}{\mathrm{max}}\left(\overline{D }\left({{\varvec{P}}}_{i,j}^{\mathrm{C}}\right)\right)\sum_{j\in {\Omega }_{-}^{C}}\left({D}_{i,j}^{\mathrm{C}}-\frac{{p}_{\mathrm{C}}}{L}\right)-(1-{p}_{\mathrm{C}}){\overline{D }({\varvec{P}}}_{i}^{\mathrm{C}})$$
(12)

where \({\Omega }_{+}^{\mathrm{C}}=\left\{j|{D}_{i,j}^{\mathrm{C}}\ge \frac{{p}_{\mathrm{C}}}{L}\right\}\) and \({\Omega }_{-}^{\mathrm{C}}=\left\{j|j=1,\cdots ,L\right\}-{\Omega }_{+}^{\mathrm{C}}\).

From Eq. (5) and the definition of \({D}_{i,j}^{\mathrm{C}}\):

$$\sum_{j=1}^{L}\frac{{p}_{\mathrm{C}}}{L}+1-{p}_{\mathrm{C}}=1 \mathrm{and }\sum_{j=1}^{L}{D}_{i,j}^{\mathrm{C}}=1\Rightarrow \sum_{j\in {\Omega }_{+}^{\mathrm{C}}}\left({D}_{i,j}^{\mathrm{C}}-\frac{{p}_{\mathrm{C}}}{L}\right)+\sum_{j\in {\Omega }_{-}^{\mathrm{C}}}\left({D}_{i,j}^{\mathrm{C}}-\frac{{p}_{\mathrm{C}}}{L}\right)-\left(1-{p}_{\mathrm{C}}\right)=0.$$
(13)

when \({p}_{\mathrm{C}}=1\), the following equation establishes from Eq. (13):

$$\sum_{j\in {\Omega }_{-}^{\mathrm{C}}}\left({D}_{i,j}^{\mathrm{C}}-\frac{1}{L}\right)=-\sum_{j\in {\Omega }_{+}^{\mathrm{C}}}\left({D}_{i,j}^{\mathrm{C}}-\frac{1}{L}\right)$$
(14)

Then substituting Eq. 14 and \({p}_{\mathrm{C}}=1\) to Eq. (12) yields

$$E\left(\overline{D }\left(C\left({{\varvec{P}}}_{i}^{\mathrm{C}}\right)\right)\right)-E\left(\overline{D }\left(\widehat{C}\left({{\varvec{P}}}_{i}^{\mathrm{C}}\right)\right)\right)\ge \left[\underset{j\in {\Omega }_{+}^{\mathrm{C}}}{\mathrm{min}}\left(\overline{D }\left({{\varvec{P}}}_{i,j}^{\mathrm{C}}\right)\right)\right.-\left.\underset{j\in {\Omega }_{-}^{\mathrm{C}}}{\mathrm{max}}\left(\overline{D }\left({{\varvec{P}}}_{i,j}^{\mathrm{C}}\right)\right)\right]\sum_{j\in {\Omega }_{+}^{\mathrm{C}}}\left({D}_{i,j}^{\mathrm{C}}-\frac{1}{L}\right)$$
(15)

According to the definition of \({\Omega }_{+}^{\mathrm{C}}\) and \({\Omega }_{-}^{\mathrm{C}}\):

$${D}_{i,j}^{\mathrm{C}}-\frac{1}{L}\ge 0, \forall j\in {\Omega }_{+}^{\mathrm{C}}\,\mathrm{ and }\,\underset{j\in {\Omega }_{-}^{\mathrm{C}}}{\mathrm{max}}\left(\overline{D }\left({{\varvec{P}}}_{i,j}^{\mathrm{C}}\right)\right)\frac{1}{d}\mathrm{ln}\left(\frac{{p}_{\mathrm{C}}}{L}\sum_{k=1}^{L}{\mathrm{e}}^{d\times \overline{D }\left({{\varvec{P}}}_{i,k}^{\mathrm{C}}\right)}\right)\le \underset{j\in {\Omega }_{+}^{\mathrm{C}}}{\mathrm{min}}\left(\overline{D }\left({{\varvec{P}}}_{i,j}^{\mathrm{C}}\right)\right)$$
(16)

Conclusion C1 is proved by substituting Eq. (16) to Eq. (15).

When \(0\le {p}_{\mathrm{C}}<1\), the following equation is deduced by substituting Eq. (13) to Eq. (11):

$$E\left(\overline{D }\left(C\left({{\varvec{P}}}_{i}^{\mathrm{C}}\right)\right)\right)-E\left(\overline{D }\left(\widehat{C}\left({{\varvec{P}}}_{i}^{\mathrm{C}}\right)\right)\right)=\sum_{j=1}^{L}{D}_{i,j}^{\mathrm{C}}\left(\overline{D }\left({{\varvec{P}}}_{i,j}^{\mathrm{C}}\right)-{\overline{D }({\varvec{P}}}_{i}^{\mathrm{C}})\right) -\frac{{p}_{\mathrm{C}}}{L}\sum_{j=1}^{L}\left(\overline{D }\left({{\varvec{P}}}_{i,j}^{\mathrm{C}}\right)-{\overline{D }({\varvec{P}}}_{i}^{\mathrm{C}})\right)$$
(17)

Equation (17) is monotonically decreasing with \({p}_{\mathrm{C}}\) as the variable when Eq. (7) establishes, and so C2 establishes with the conclusion derived from C1.

1.3 Proof of Lemma 1

Since the N times canonical mutations are independent, the following equations are obtained:

$${P}_{\mathrm{r}}\left(\tilde{M }\left({{\varvec{X}}}^{\mathrm{C}}\right)={{\varvec{X}}}^{\mathrm{M}*}\right)=\sum_{i=0}^{N}\left[\frac{i{\mathrm{C}}_{N}^{i}}{N}{\mathrm{P}}_{\mathrm{r}}^{i}\left(\widehat{M}\left({{\varvec{X}}}^{\mathrm{C}}\right)={{\varvec{X}}}^{\mathrm{M}*}\right)\right.\times \left.{\left(1-{P}_{\mathrm{r}}\left(\widehat{M}\left({{\varvec{X}}}^{\mathrm{C}}\right)={{\varvec{X}}}^{\mathrm{M}*}\right)\right)}^{N-i}\right]={P}_{\mathrm{r}}\left(\widehat{M}\left({{\varvec{X}}}^{\mathrm{C}}\right)={{\varvec{X}}}^{\mathrm{M}*}\right)\times \sum_{i=1}^{N-1}\left[{\mathrm{C}}_{N-1}^{i-1}{\mathrm{P}}_{\mathrm{r}}^{i-1}\left(\widehat{M}\left({{\varvec{X}}}^{\mathrm{C}}\right)={{\varvec{X}}}^{\mathrm{M}*}\right)\right.\times \left.{\left(1-{P}_{\mathrm{r}}\left(\widehat{M}\left({{\varvec{X}}}^{\mathrm{C}}\right)={{\varvec{X}}}^{\mathrm{M}*}\right)\right)}^{N-i}\right]$$
(18)

where \({\mathrm{C}}_{N}^{i}=\frac{N!}{i!\left(N-i\right)!}\) denotes the combination number.

According to the binomial expansion

$$\sum_{i=1}^{N-1}\left[{\mathrm{C}}_{N-1}^{i-1}{\mathrm{P}}_{\mathrm{r}}^{i-1}\left(\widehat{M}\left({{\varvec{X}}}^{\mathrm{C}}\right)={{\varvec{X}}}^{\mathrm{M}*}\right)\right.\times \left.{\left(1-{P}_{\mathrm{r}}\left(\widehat{M}\left({{\varvec{X}}}^{\mathrm{C}}\right)={{\varvec{X}}}^{\mathrm{M}*}\right)\right)}^{N-i}\right]=\left[{P}_{\mathrm{r}}\left(\widehat{M}\left({{\varvec{X}}}^{\mathrm{C}}\right)={{\varvec{X}}}^{\mathrm{M}*}\right)+1\right.{\left.-{P}_{\mathrm{r}}\left(\widehat{M}\left({{\varvec{X}}}^{\mathrm{C}}\right)={{\varvec{X}}}^{\mathrm{M}*}\right)\right]}^{N-1}=1$$
(19)

Lemma 1: Is proved by substituting Eq. (19) to Eq. (18).

1.4 Proof of Theorem 2

According to Step 6 and Lemma 1:

$$E\left(\overline{D }\left(M\left({{\varvec{X}}}^{\mathrm{C}}\right)\right)\right)-E\left(\overline{D }\left(\widehat{M}\left({{\varvec{X}}}^{\mathrm{C}}\right)\right)\right)=\sum_{i=1}^{N}\left({D}_{i}^{\mathrm{M}}-\frac{1}{N}\right)\times \overline{D }\left({{\varvec{X}}}_{i}^{\mathrm{M}}\right)$$
(20)

Being similar to the analysis procedure of Eq. (12), Eq. (20) is re-written as

$$E\left(\overline{D }\left(M\left({{\varvec{X}}}^{\mathrm{C}}\right)\right)\right)-E\left(\overline{D }\left(\widehat{M}\left({{\varvec{X}}}^{\mathrm{C}}\right)\right)\right)\ge \underset{i\in {\Omega }_{+}^{\mathrm{M}}}{\mathrm{min}}\left(\overline{D }\left({{\varvec{X}}}_{i}^{\mathrm{M}}\right)\right)\times \sum_{i\in {\Omega }_{+}^{\mathrm{M}}}\left({D}_{i}^{\mathrm{M}}-\frac{1}{N}\right)+\underset{i\in {\Omega }_{-}^{\mathrm{M}}}{\mathrm{max}}\left(\overline{D }\left({{\varvec{X}}}_{i}^{\mathrm{M}}\right)\right)\times \sum_{i\in {\Omega }_{-}^{\mathrm{M}}}\left({D}_{i}^{\mathrm{M}}-\frac{1}{N}\right)$$
(21)

where \({\Omega }_{+}^{\mathrm{M}}=\left\{i|{D}_{i}^{\mathrm{M}}\ge \frac{1}{N}\right\}\), \({\Omega }_{-}^{\mathrm{M}}=\left\{i|i=1,\cdots ,N\right\}-{\Omega }_{+}^{\mathrm{M}}\) and \(D_{i}^{M} = e^{{d \times \overline{D}\left( {X_{i}^{M} } \right)}} /\sum\limits_{k = 1}^{N} {e^{{d \times \overline{D}\left( {X_{k}^{M} } \right)}} }\) is the normalized complexity. Equation (9) is derived referring to the analysis process from (15) to (16) with the fact that \(\sum\nolimits_{i = 1}^{N} {D_{i}^{M} = 1}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Mu, J., Han, X. et al. Performance Limit Evaluation Strategy for Automated Driving Systems. Automot. Innov. 5, 79–90 (2022). https://doi.org/10.1007/s42154-021-00168-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42154-021-00168-8

Keywords

Navigation