Skip to main content

Advertisement

Log in

Groundwater—from freshwater source to green energy: an overview from concern to solution

  • Review Article
  • Published:
International Journal of Energy and Water Resources Aims and scope Submit manuscript

Abstract

Water is probably the most inevitable substance for the survival of life on Earth. Though Earth has an infinite source of water, most of it is of no use since it is saline ocean water. Ignoring the water stored in continental glaciers, the only source of freshwater is groundwater. This resource is now under huge stress due to unplanned and over-use. Now the time has come to take groundwater management as a serious concern. Here, an attempt has been made to capture different issues of groundwater management, its applicability, and limitation in terms of the present state of research. This article discusses the feasibility of groundwater management in terms of groundwater quantity, artificial recharge to aquifer and groundwater quality both chemical and bacteriological. A holistic approach has been adopted to discuss technological advancements to address the groundwater management issues like desalination and membrane filtration, its limitations, and future scope of improvement. Thermal pollution of groundwater and its impact on saline water intrusion to coastal aquifers have been addressed in the discussion. The effect of global climate change on the hydrosphere and its impact on groundwater management have also been incorporated. One of the mitigations to global warming is exploring different sources of green energy. One of them and the most explored options is geothermal energy. The use of geothermal heat for electricity generation and space heating has also been included in the discussion with technological limitations which is always an open area of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggrawal, P. K., Basu, A. R., & Julkarni, K. M. (2003). Comment on ‘Arsenic mobility and groundwater extraction in Bangladesh. Science, 300, 584b.

    Article  Google Scholar 

  • Amjad, Z. (Ed.). (1993). Reverse Osmosis. Van Nostrand Reinhold.

    Google Scholar 

  • Anderson, M. P. (2005). Heat as a ground water tracer. Ground Water, 43, 951–968. https://doi.org/10.1111/j.1745-6584.2005.00052.x

    Article  CAS  Google Scholar 

  • Anderson, M. G., & Burt, T. P. (1978). The role of topography in controlling throughflow generation. Earth Surface Processes., 3, 331–344. https://doi.org/10.1002/esp.3290030402

    Article  Google Scholar 

  • Anibas, C., Fleckenstein, J. H., Volze, N., Bluis, K., Verhoeven, R., Meire, P., & Batelaan, O. (2009). Transient or steady-state? Using vertical temperature profiles to quantify groundwater–surface water exchange. Hydrological Processes, 23, 2165–2177. https://doi.org/10.1002/hyp.7289

    Article  Google Scholar 

  • Avery, W. H., & Wu, C. (1994). Renewable Energy from the Ocean (p. 446). Oxford University Press.

    Book  Google Scholar 

  • Baker, R. W. (2004). Membrane Technology and Applications. Wiley. ISBN: 0-470-85445-6.

    Book  Google Scholar 

  • Banks, D. (2008). An Introduction to Thermogeology: Ground Source Heating and Cooling. Blackwell Publishing Ltd.

    Book  Google Scholar 

  • Barbier, E. (1997). Nature and technology of geothermal energy: A review. Renewable and Sustainable Energy Reviews, 1, 1–69.

    Article  CAS  Google Scholar 

  • Barbier, E. (2002). Geothermal energy technology and current status: An overview. Renewable and Sustainable Energy Reviews, 6, 3–65.

    Article  Google Scholar 

  • Bataineh, K. M. (2016). Multi-effect desalination plant combined with thermal compressor driven by steam generated by solar energy. Desalination, 385, 39–52.

    Article  CAS  Google Scholar 

  • Bayer, P., Saner, D., Bolay, S., Rybach, L., & Blum, P. (2012). Greenhouse gas emission savings of ground source heat pump systems in Europe: A review. Renewable and Sustainable Energy Reviews., 16(2), 1256–1267.

    Article  Google Scholar 

  • Bear, J., Cheng, A. H., Sorek, S., Ouazar, D., & Herrers, I. (Eds.). (1999). Seawater Intrusion in Coastal Aquifer Concepts, Methods, and Practices. Kluwer Academic Publishers.

    Google Scholar 

  • Beardsmore, G. R. (2004). The influence of basement on surface heat flow in the Cooper Basin. Exploration Geophysics., 35(4), 23941.

    Article  Google Scholar 

  • Bechhold, H. (1907). Kolloidstudien mit der Filtrationsmethode. Zeitschrift Für Physikalische Chemie, 60, 257.

    Article  Google Scholar 

  • Bergman, R., (Ed) (2007). Manual of Water Supply Practices. (M46) (2007). Second Edition. Reverse Osmosis and Nanofiltration. American Water Works Association. Library of Congress Cataloging-in-Publication Data.

  • Bertani, R. (2005). World geothermal power generation in the period 2001–2005. Geothermics, 34, 651–690.

    Article  Google Scholar 

  • Bonte, M., Stuyfzand, P. J., Hulsmann, A., & van Beelen, P. (2011). Underground thermal energy storage: Environmental risks and policy developments in the Netherlands and European Union. Ecology and Society, 16(1), 22.

    Article  Google Scholar 

  • Bottinga, Y. (1969). Carbon isotope fractionation between graphite, diamond and carbon dioxide. Earth and Planetary Science Letters, 5, 301–307.

    Article  CAS  Google Scholar 

  • Bouwer, H. (1985). Waste Water Recharge. Seminar on Artificial Recharge of Ground Water. Central Ground Water Board, Government of India, Ahmedabad, p. 11-1–13-13.

  • Central Ground Water Board. (2000). Guide on Artificial Recharge to Groundwater. In: Ministry of Water Resources, Government of India, Open file report, New Delhi, India.

  • Chacko, T., Cole, D. R., & Horita, J. (2001). Equilibrium oxygen, hydrogen and carbon fractionation factors applicable to geologic systems. Reviews in Mineralogy and Geochemistry, 43, 1–81.

    Article  CAS  Google Scholar 

  • Claude, G. (1930). Power from the tropical seas. Mechanical Engineering., 52(12/19), 1039–1044.

    Google Scholar 

  • Coplen, T. B., Kendall, C., & Hopple, J. (1983). Comparison of stable isotope reference samples. Nature, 302, 236–238.

    Article  CAS  Google Scholar 

  • Dinçer, I., & Rosen, M. A. (2011). Thermal energy Storage: Systems and Applications (2nd ed.). Wiley.

    Google Scholar 

  • Dingman, S. L. (2002). Physical Hydrology (2nd ed.). Prentice Hall. ISBN: 0-13-099695-5.

    Google Scholar 

  • Domenico, A. P., & Schwartz, W. F. (1997). Physical and Chemical Hydrogeology (2nd ed.). Wiley. ISBN: 0-471-59762-7.

    Google Scholar 

  • Driesner, T. (1997). The effect of pressure on deuterium-hydrogen fractionation in high-temperature water. Science, 277, 791–794.

    Article  CAS  Google Scholar 

  • Duffield, W.A., & Sass, J.H. (2003). Geothermal energy-clean power from the Earth's heat. US Geological Survey Circular 1249, p 36.

  • Ekea, J., Yusufb, A., Adewale Giwab, A., & Sodiqc, A. (2020). The global status of desalination: An assessment of current desalination technologies, plants and capacity. Desalination. https://doi.org/10.1016/j.desal.2020.114633

    Article  Google Scholar 

  • Ferry, J. D. (1936). Ultrafilter membranes and ultrafiltration. Chemical Reviews, 18, 373.

    Article  CAS  Google Scholar 

  • Fetter, C. W. (2001). Applied Hydrogeology (4th ed.). Prentice Hall, Inc.

    Google Scholar 

  • Fournier, R. O., & Truesdell, A. H. (1973). An empirical Na–K–Ca geothermometer for natural water. Geochimica Et Cosmochimica Acta, 37, 1255–1275.

    Article  CAS  Google Scholar 

  • Ganguly, S., Bhan, U., Rai, S. K., Mittal, S., Ahluwalia, R. S., & Verma, A. (2019a). An experimental approach to estimate groundwater temperature from 18O fractionation. Groundwater for Sustainable Development., 9, 100257. https://doi.org/10.1016/j.gsd.2019.100257

    Article  Google Scholar 

  • Ganguly, S., Rai, S. K., Mittal, S., Bhan, U., & Ahluwalia, R. S. (2019b). Estimation of groundwater temperature from 18O fractionation-a deterministic analytical model. Groundwater for Sustainable Development., 9, 1000234. https://doi.org/10.1016/j.gsd.2019.100234

    Article  Google Scholar 

  • Goff, F., & Gardner, J.N. (2000). Encyclopedia of Volcanoes. Edited by Sigurdsson, H. Academic Press.

  • Gotkowitz, M. B., Schreiber, M. E., & Simo, T. (2000). Delineating causes of arsenic contamination of groundwater, eastern Wisconsin. EOS Transactions, AGU Fall Meeting Supplement, 81, 552.

    Google Scholar 

  • GSI. (1991). Geothermal atlas of India. GSI Sp Pub No.19, pp 102–110.

  • Gupta, H., & Roy, S. (2006). Geothermal energy, an alternative resource for the twenty-first century. Elsevier.

    Google Scholar 

  • Hanse, A., Chabukdhara, M., & Gohain Baruah, S. (2019). Fluoride contamination in groundwater and associated health risks in Karbi Anglong District, Assam, Northeast India. Environmental Monitoring and Assessment, 191, 782. https://doi.org/10.1007/s10661-019-7970-6

    Article  CAS  Google Scholar 

  • Henley, R. W., & Ellis, A. J. (1983). Geothermal systems, ancient and modern: A geochemical review. Earth Science Review, 19, 1–50.

    Article  CAS  Google Scholar 

  • Hoefs, J. (2009). Stable Isotope Geochemistry (6th ed.). Springer-Verlag. 978-3-540-70703-5. Library of Congress Control Number: 2008933507.

    Google Scholar 

  • Horita, J., Cole, D. R., Polyakov, V. B., & Driesner, T. (2002). Experimental and theoretical study of pressure effects on hydrous isotope fractionation in the system brucite-water at elevated temperatures. Geochimica Et Cosmochimica Acta, 66, 3769–3788.

    Article  CAS  Google Scholar 

  • Horita, J., Driesner, T., & Cole, D. R. (1999). Pressure effect on hydrogen isotope fractionation between brucite and water at elevated temperatures. Science, 286, 1545–1547.

    Article  CAS  Google Scholar 

  • Huang, S., Pollack, H. N., & Shen, P. Y. (2000). Temperature trends over the past five centuries reconstructed from borehole temperatures. Nature, 403, 756–758.

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). (2007). Climate change 2007. Cambridge University Press.

    Book  Google Scholar 

  • Kalina, A. L. (1984). Combined cycle system with novel bottoming cycle. ASME Journal of Engineering for Gas Turbines and Power, 106, 737–742.

    Article  CAS  Google Scholar 

  • Kappelmeyer, O., & Hänel, R. (1974). Geothermics with special reference to application. Gebruder Borntrargen.

    Google Scholar 

  • Karagiannis, I. C., & Soldatos, P. G. (2008). Water desalination cost literature: review and assessment. Desalination, 223, 448–456.

    Article  CAS  Google Scholar 

  • Karanth, K. R. (1987). Ground water Assessment Development and Management. McGraw Hill Publication.

    Google Scholar 

  • Kathiroli, S., Jalihal, P., & Singh, R. (2006). Low temperature thermal desalination plant at Kavaratti, Lakshadweep. Geological Society of India, 67, 820–822.

    Google Scholar 

  • Kitchen, N. E., & Valley, J. W. (1995). Carbon isotope thermometry in marbles of the Adirondack Mountains. Journal of Metamorphic Geology, 13, 577–594.

    Article  CAS  Google Scholar 

  • Ko, A., & Guy, D. B. (1998). “Brackish and Seawater Desalting. In B. S. Parekh (Ed.), Reverse Osmosis Technology” (pp. 141–184). Marcel Dekker.

    Google Scholar 

  • Kohn, M. J., & Valley, J. W. (1998). Obtaining equilibrium oxygen isotope fractionations from rocks: Theory and examples. Contributions to Mineralogy and Petrology, 132, 209–224.

    Article  CAS  Google Scholar 

  • Kooi, H. (2008). Spatial variability in subsurface warming over the last three decades; insight from repeated borehole temperature measurements in The Netherlands. Earth and Planetary Science Letters, 270(1–2), 86–94.

    Article  CAS  Google Scholar 

  • Lebbihiat, N., Atia, A., Arıcı, M., & Meneceur, N. (2021). Geothermal energy use in Algeria: A review on the current status compared to the worldwide, utilization opportunities and countermeasures. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2021.126950

    Article  Google Scholar 

  • Lee, J. H., & Bang, K. W. (2000). Characterization of urban storm water runoff. Water Research, 34, 1773–1780.

    Article  CAS  Google Scholar 

  • Lloyd, D. R., Barlow, J. W., & Kinzer, K. E. (1998). Microporous Membrane Formation via Thermally-induced Phase, in New Membrane Materials and Processes for Separation. K.K. Sirkar & D.R. Lloyd (eds.), AIChE Symposium Series 261, AIChE, New York, NY, p 84.

  • Loeb, S., & Sourirajan, S. (1963). Sea Water Demineralization by Means of an Osmotic Membrane. In R. F. Gould (Ed.), Saline Water Conversion II, Advances in Chemistry Series Number 38 (pp. 117–132). American Chemical Society.

    Google Scholar 

  • Lowrie, W. (2007). Fundamentals of Geophysics (2nd ed.). Cambridge University Press. ISBN-13: 978-0-521-27038-0.

    Book  Google Scholar 

  • Lund, J. W., & Freeston, D. H. (2001). Worldwide direct uses of geothermal energy 2000. Geothermics, 30, 29–68.

    Article  CAS  Google Scholar 

  • Lund, J. W., Freeston, D. H., & Boyd, T. L. (2005). Direct application of geothermal energy: 2005 worldwide review. Geothermics, 34, 691–727.

    Article  Google Scholar 

  • Lund, J. W., Freeston, D. H., & Boyd, T. L. (2011). Direct utilization of geothermal energy 2010 worldwide review. Geothermics, 40(3), 159–180.

    Article  Google Scholar 

  • Macedonio, F., Curcio, E., & Drioli, E. (2007). Integrated membrane systems for seawater desalination: energetic and exergetic analysis, economic evaluation, experimental study. Desalination, 203, 260–276.

    Article  CAS  Google Scholar 

  • Malek, A., Hawlader, M. N. A., & Ho, J. C. (1996). Design and economics of RO seawater desalination. Desalination, 105, 249–261.

    Article  Google Scholar 

  • Matthess, G. (1981). In situ treatment of arsenic contaminated groundwater: in Quality of groundwater. International symposium, Noordwijkerhout, Netherlands, pp. 99–104.

  • McDonalds, M.G., & Harbaugh, A.W. (1988). A modular three-dimensional finite difference ground water flow model. USGS open file report p 875.

  • Muirhead, A., Beardsley, S., & Aboudiwan, J. (1982). Performance of the 12,000 m3/day sea water reverse osmosis desalination plant at Jeddah Saudi Arabia. Desalination, 42, 115. Jan. 1979–Jan. 1981.

    Article  CAS  Google Scholar 

  • Mukherjee, I., & Singh, U. K. (2018). Groundwater fluoride contamination, probable release, and containment mechanisms: A review on Indian context. Environmental Geochemistry and Health, 40, 2259–2301. https://doi.org/10.1007/s10653-018-0096-x

    Article  CAS  Google Scholar 

  • National Research Council. (1994). Ground Water Recharge Using Waters of Impaired Quality. The National Academies Press. https://doi.org/10.17226/4780

    Book  Google Scholar 

  • NIOT. (2005). Annual report 2004–2005 (pp. 3–5). National Institute of Ocean Technology.

    Google Scholar 

  • NREL. (2006). Ocean thermal energy conversion. National Renewable Energy Laboratory. http://www.nrel.gov/otec

  • Nulsen, R., & McConnell, C. (2000). Salinity at a glance. Farm note can be found at: www.agric.wa.gov.au/agency/Pubns/farmnote/2000/f00800.htm

  • Parekh, B. (Ed.). (1998). Reverse Osmosis Technology. Marcel Dekker.

    Google Scholar 

  • Polizzotto, M. L., Kocar, B. D., Benner, S. G., Sampson, M., & Fendorf, S. (2008). Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature. https://doi.org/10.1038/nature07093

    Article  Google Scholar 

  • Polyakov, V. B., Horita, J., & Cole, D. R. (2006). Pressure effects on the reduced partition function ratio for hydrogen isotopes in water. Geochimica Et Cosmochimica Acta, 70, 1904–1913.

    Article  CAS  Google Scholar 

  • Pouyfaucon, A. B., & García-Rodríguez, L. (2018). Solar thermal-powered desalination: A viable solution for a potential market. Desalination, 435, 60–69.

    Article  CAS  Google Scholar 

  • Ravindran, M. (2005). Harnessing of the ocean thermal energy resource. In H. K. Gupta (Ed.), Oceanology (pp. 26–38). Universities Press.

    Google Scholar 

  • Rybach, L. (1976). Radioactive heat production in rocks and its relation to other petrophysical parameters. Pure Applied Geophysics., 114, 309–318.

    Article  CAS  Google Scholar 

  • Rybach, L. (1988). Determination of heat production rate. In R. Haenel, L. Rybach, & L. Stegena (Eds.), Handbook of Terrestrial Heat Flow Density Determination (p. 486). Kluwer Academic Publishers.

    Google Scholar 

  • Sáinz García, Á. M., Molinero Huguet, J. J., & Saaltink, M. W. (2011). Numerical modeling of coastal aquifer karst processes by means of coupled simulations of density-driven flow and reactive solute transport phenomena. Carbonates and Evaporites, 26, 19–27.

    Article  Google Scholar 

  • Sharp, Z. D. (1995). Oxygen isotope geochemistry of the Al2SiO5 polymorphs. American Journal of Science, 295, 1058–1076.

    Article  CAS  Google Scholar 

  • Shiklomanov, I. A., & Sokolov, A. A. (1983). Methodological basis of world water balance investigation and computation. In: New approaches in water computations. International Association for Hydrological Sciences Publ. No. 148. (Proceedings of the Hamburg Symposium).

  • Stanger, G., Truong, T. V., Ngoc, K. S. L. T. M., Luyen, T. V., & Thanh, T. T. (2005). Arsenic in groundwaters of the lower Mekong. Environmental Geochemistry and Health, 27, 341–357.

    Article  CAS  Google Scholar 

  • Taniguchi, M., Shimada, J., & Uemura, T. (2003). Transient effects of surface temperature and groundwater flow on subsurface temperature in Kumamoto Plain, Japan. Physics and Chemistry of the Earth A/b/c, 28(9–11), 477–486.

    Article  Google Scholar 

  • Todd, D. K. (1980). Groundwater Hydrology (2nd ed.). Wiley. ISBN: 0-471-87616-X.

    Google Scholar 

  • Tulipano, L., Fidelibus, M. D., & Panagopoulos, A. (Eds.) (2005). Groundwater management of Coastal Karstic Aquifers. In: COST ACTION 621 Final Report, vol. EUR 21366; EU Publications Office (OPOCE): Luxembourg City, Luxembourg; ISBN 92-894-0015-1.

  • UNESCO. (2006). Water a shared responsibility. United Nations Water Development Report 2. http://www.unesco.org/water/wwap/wwdr2/table_contents.shtml.

  • United States Department of Interior, Bureau of Reclamation. (2003). Desalting Handbook for Planners. Cost Estimating Procedures. Technical Service Center, Desalination and Water Purification Research and Development Program Report No. 72 (3rd Edition). pp 187–231.

  • Van der Bruggen, B. (2003). Desalination by distillation and by reverse osmosis—Trends towards the future. Membrane Technology, 2003, 6–9.

    Article  Google Scholar 

  • Vega, L. A. (1992). Economics of ocean thermal energy conversion (OTEC). In R. J. Seymour (Ed.), Ocean Energy Recovery: The State-of-the Art (pp. 152–181). American Society of Civil Engineers.

    Google Scholar 

  • Vega, L. A. (1995). Ocean thermal energy conversion. Encyclopedia of Energy Technology and the Environment (pp. 2104–2119). Wiley.

    Google Scholar 

  • Webster-Brown, J.G. (2000). Chemical contaminants and their effects. In Environmental Safety and Health Issues in Geothermal Development: in World Geothermal Congress, Kazuno, Japan.

  • Welch, A. H., Kenneth, G., & Stollenwerk, K. G. (2000). Arsenic in groundwater. Kluwer Academic Publishers. ISBN: 1-4020-7317-8.

    Google Scholar 

  • Zheng, Y. F. (1993). Oxygen isotope fractionation in SiO2 and Al2SiO5 polymorphs: Effect of crystal structure. European Journal of Mineralogy, 5, 651–658.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to acknowledge Dr. Gurvinder Singh Virk, Dean-School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India for motivating me to write this manuscript. Also, I would like to acknowledge Dr. Santosh K. Rai, Scientist, Wadia Institute of Himalayan Geology, Dehradun, Uttarakhand, India for his valuable feedback on the manuscript for improvement.

Funding

I also declare that no financial grant was received to accomplish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ganguly.

Ethics declarations

Conflict of interest

Being the single and corresponding author of this review article, I Somenath Ganguly declare that there is no such competing financial or personal conflict of interest that can influence the work reported in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganguly, S. Groundwater—from freshwater source to green energy: an overview from concern to solution. Int J Energ Water Res 6, 555–567 (2022). https://doi.org/10.1007/s42108-021-00150-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42108-021-00150-4

Keywords

Navigation