Skip to main content
Log in

Radioactive heat production in rocks and its relation to other petrophysical parameters

  • Thermal and Radioactive Properties
  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Summary

Radioactive heat productionA is a scalar and isotropic petrophysical property independent of in situ temperature and pressure. Its value is usually expressed in HGU units (1 HGU=10−13 cal/cm3 sec) and depends on the amounts of uranium, thorium and potassium.A varies with rock type over several orders of magnitude and reflects the geochemical conditions during rock formation (magmatic differentiation, sedimentation or metamorphism).

In order to assign realistic thermal parameters to deeper-seated rocks correlations with seismic velocity (which can be determined from the surface) have been looked for. In the range characteristic for crystalline rocks of the crust (5–8 km/sec)A is strongly correlated with density and compressional wave velocityv p:A decreases with increasingv p orp. From this relationship it is now possible to estimate heat production values for any particular layer of a crustal section from measured seismic velocities. Contrary to earlier belief there is, as shown by experimental determinations, no correlation between heat productionA and thermal conductivityK in igneous and metamorphic rocks. In sediments however, especially in sand/shale sequences, a correlation betweenK andA is most likely: increasing clay mineral content, characterized by increasingA, causes the decrease ofK in these rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Anderson,A seismic equation of state, Geophys. J. Roy. Astron. Soc.,13 (1967), 9.

    Google Scholar 

  2. D. L. Anderson, C. Sammis andT. Jordan,Composition of mantle and core, inThe Nature of the Solid Earth, edited by E. C. Robertson, pp. 41–66, McGraw-Hill, New York (1972).

    Google Scholar 

  3. F. Birch,Heat from radioactivity, inNuclear Geology, edited by H. Faul, pp. 148–174, Wiley & Sons, New York (1954).

    Google Scholar 

  4. F. Birch,The velocity of compressional waves in rocks to 10 kilobar, 2, J. Geophys. Res.66 (1961), 2199.

    Google Scholar 

  5. C. Brunée andH. Voshage,Massenspektrometrie, Thiemig, München (1964).

    Google Scholar 

  6. S. P. Clark, Z. E. Peterman andK. S. Heier,Abundances of uranium, thorium and potassium, inHandbook of Physical Constants, edited by S. P. Clark, pp. 521–542 Geol. Soc. Amer. Memoir97, Washington (1966).

  7. K.-I. Horai andA. Nur,Relationship among terrestrial heat flow, thermal conductivity and geothermal gradient, J. Geophys. Res.75 (1970), 1985.

    Google Scholar 

  8. P. M. Hurley andH. Fairbairn,Radiation damage in zircon: A possible age method, Bull. Geol. Soc. Amer.64 (1953), 659.

    Google Scholar 

  9. E. K. Hyde, I. Perlman andG. T. Seaborg,The Nuclear Properties of the Heavy Elements. II. Detailed Radioactive Properties, Prentice Hall, Englewood Cliffs, N.J. (1964).

    Google Scholar 

  10. L. R. Johnson andH.-R. Wenk,Anisotropy of physical properties in metamorphic rocks, Tectonophys.23 (1974), 79.

    Google Scholar 

  11. H. Leutz, G. Schultz andH. Wenninger,Decay of potassium 40, Z. Physik187 (1965), 151.

    Google Scholar 

  12. N.-H. Mao,Velocity-density systematics and its implications for the iron content of the mantle, J. Geophys. Res.79 (1974), 5447.

    Google Scholar 

  13. J. E. Nafe andC. L. Drake, inM. Talwani, G. A. Sutton andJ. L. Worzel,A crustal section across the Puerto Rico Trench, J. Geophys. Res.64 (1959), 1545.

    Google Scholar 

  14. L. Rybach,Wärmeproduktionsbestimmungen an Gesteinen der Schweizer Alpen. Beitr. Geol. Schweiz, Geotechn. Ser. Lfg. 51, Kümmerly & Frey, Bern (1973).

    Google Scholar 

  15. L. Rybach,Radioactive heat production: A physical property determined by the chemistry of rocks, inProc. NATO Adv. Study Inst. on Petrophysics, Wiley & Sons, New York (in press).

  16. T. J. Shankland,Velocity-density systematics: Derivation from Debye theory and the effect of ionic size, J. Geophys. Res.77 (1972), 3750.

    Google Scholar 

  17. H. Wakita, H. Nagasawa, S. Uyeda andH. Kuno,Uranium, thorium and potassium contents of possible mantle materials, Geochem. J.1 (1967), 183.

    Google Scholar 

  18. H. R. Wenk andE. Wenk,Physical constants of Alpine rocks (Density, porosity, specific heat, thermal diffusivity and conductivity), Schweiz. Min. Petr. Mitt.49 (1969), 343.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution No. 111, Institute of Geophysics, Swiss Federal Institute of Technology, Zurich, Switzerland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rybach, L. Radioactive heat production in rocks and its relation to other petrophysical parameters. PAGEOPH 114, 309–317 (1976). https://doi.org/10.1007/BF00878955

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00878955

Keywords

Navigation