Skip to main content

Advertisement

Log in

Retrieval of Land Surface Temperature from Landsat 8 OLI and TIRS: A Comparative Analysis Between Radiative Transfer Equation-Based Method and Split-Window Algorithm

  • Original Paper
  • Published:
Remote Sensing in Earth Systems Sciences Aims and scope Submit manuscript

Abstract

The system of observation and capturing the earth resource features have been improving with the scientific revolution and technological development in remote sensing techniques. In comparison with the previous Landsat series, Landsat 8 OLI and TIRS (Operational Land Imager and Thermal Infrared Sensor) is the latest applications of thermal infrared sensor for the Landsat project offers two adjacent thermal bands that has a great advantage for retrieving land surface temperature. In this study, an effort was made to compare two different approaches of land surface temperature retrieval method from TIRS data including the radiative transfer equation (RTE) and the split-window algorithm (SWA). The objective of this study was to estimate land surface temperature from TIRS data of Landsat 8 using different techniques and compare with actual ground temperature for pre-monsoon, monsoon, and post-monsoon season to determine accurate technique and thermal band. In this regard, twelve ground stations such as New Delhi, Noida, Ghaziabad, Bulandshahr, Gurugram, Faridabad, Muradnagar, Safdarjung airport, Indira Gandhi international airport, Rajiv Chowk, Dadri, and Kirti Nagar were marked on Landsat 8 product with Path 146 and Row 40. Based on analysis, the result shows that the radiative transfer equation (RTE) using band 10 has highest accuracy with the lowest root mean square error (1.0334 ℃, 1.5189 ℃, and 1.4197 ℃, respectively for pre-monsoon, monsoon, and post-monsoon), while RTE using band 11 and split-window algorithm (SWA) using band 10 and 11 has lower accuracy with higher root mean square error (> 2.0 ℃ in all cases). Thus, it is recommended that for those methods LST retrieval using single band, band 10 using RTE has higher accuracy than band 11 and split-window algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Source: Landsat 8 data user’s handbook, Department of the Interior U.S. Geological Survey 2016)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author Sk Ajim Ali (skajimali@myau.ac.in / skajimali.saa@gmail.com) on reasonable request.

References

  1. Aimone AM, Perumal N, Cole DC (2013) A systematic review of the application and utility of geographical information systems for exploring disease-disease relationships in paediatric global health research: the case of anaemia and malaria. Int J Health Geogr 12(1):1–13. https://doi.org/10.1186/1476-072X-12-1

    Article  Google Scholar 

  2. Ali SA, Ahmad A (2018) Using analytic hierarchy process with GIS for dengue risk mapping in Kolkata Municipal Corporation, West Bengal. India Spat Inf Res 26(4):449–469. https://doi.org/10.1007/s41324-018-0187-x

    Article  Google Scholar 

  3. Ali SA, Ahmad A (2019) Mapping of mosquito-borne diseases in Kolkata Municipal Corporation using GIS and AHP based decision making approach. Spat Inf Res. https://doi.org/10.1007/s41324-019-00242-8

    Article  Google Scholar 

  4. Anderson MC, Norman JM, Kustas WP, Houborg R, Starks PJ, Agam N (2008) A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales. Remote Sens Environ 112:4227–4241

    Article  Google Scholar 

  5. Atitar M, Sobrino JA (2009) A split-window algorithm for estimating LST from Meteosat 9 Data: test and comparison with in situ data and MODIS LSTs. IEEE Geosci Remote Sens Lett 6:122–126. https://doi.org/10.1109/LGRS.2008.2006410

    Article  Google Scholar 

  6. Becker F (1987) The impact of spectral emissivity on the measurement of land surface temperature from a satellite. Int J Remote Sens 8:1509–1522. https://doi.org/10.1080/01431168708954793

    Article  Google Scholar 

  7. Becker F (1990) Li ZL (1990) Towards a local split window method over land surfaces. Int J Remote Sens 11:369–393. https://doi.org/10.1080/01431169008955028

    Article  Google Scholar 

  8. Berk A, Bernstein LS, Robertson DC (1989) MODTRAN : a moderate resolution model for LOWTRAN 7. Tech. Rep. GL-TR-89–0122 Air Force Geophysics Laboratory Hanscom Air Force Base Bedford MA.

  9. Bunai T, Rokhmatuloh WA (2018) Comparison spatial pattern of land surface temperature with mono window algorithm and split window algorithm: a case study in South Tangerang, Indonesia. IOP Conf Ser Earth Environ Sci 149:012066. https://doi.org/10.1088/1755-1315/149/1/012066

    Article  Google Scholar 

  10. Chapin FS 3rd, Sturm M, Serreze MC, McFadden JP, Key JR, Lloyd AH, McGuire AD, Rupp TS, Lynch AH, Schimel JP, Beringer J, Chapman WL, Epstein HE, Euskirchen ES, Hinzman LD, Jia G, Ping CL, Tape KD, Thompson CD, Walker DA, Welker JM (2005) Role of land-surface changes in arctic summer warming. Science 310(5748):657–660. https://doi.org/10.1126/science.1117368

    Article  Google Scholar 

  11. Chédin A, Scott NA, Berroir A (1982) A single-channel, double-viewing angle method for sea surface temperature determination from coincident Meteosat and TIROS-N radiometric measurements. J Appl Meteorol 21:613–618. https://doi.org/10.1175/1520-0450(1982)021%3c0613:ASCDVA%3e2.0.CO;2

    Article  Google Scholar 

  12. Chen XL, Hong-Mei Zhao HM, Ping-XiangLi PX, Yin ZY (2006) Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes 104(2):133–146. https://doi.org/10.1016/j.rse.2005.11.016

    Article  Google Scholar 

  13. Coll C, Caselles V, Sobrino JA, Valor E (1994) On the atmospheric dependence of the split-window equation for land surface temperature. Int J Remote Sens 15(1):105–122. https://doi.org/10.1080/01431169408954054

    Article  Google Scholar 

  14. Cristóbal J, Jiménez-Muñoz JC, Prakash A, Mattar C, Skokovic D, Sobrino JA (2018) an improved single-channel method to retrieve land surface temperature from the Landsat-8 Thermal Band. Remote Sens 10(431):1–14. https://doi.org/10.3390/rs10030431

    Article  Google Scholar 

  15. Ghobadi Y, Pradhan B, Shafri HZM, Kabiri K (2013) Assessment of spatial relationship between land surface temperature and landuse/cover retrieval from multi-temporal remote sensing data in South Karkheh Sub-basin, Iran. Arab J Geosci https://doi.org/10.1007/s12517-013-1244-3

  16. Jiménez-Muñoz JC, Cristóbal J, Sobrino JA, Sòria G, Ninyerola M, Pons X (2009) revision of the single-channel algorithm for land surface temperature retrieval from landsat thermal-infrared data. IEEE Trans Geosci Remote Sens 47(1):339–349. https://doi.org/10.1109/TGRS.2008.2007125

    Article  Google Scholar 

  17. Jiménez-Muñoz JC, Sobrino JA (2003) A generalized single-channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research 108 https://doi.org/10.1029/2003JD003480

  18. Jiménez-Muñoz JC, Sobrino JA (2008) Split-window coefficients for land surface temperature retrieval from low-resolution thermal infrared sensors. IEEE Geosci Remote Sens Lett 5(4):806–809. https://doi.org/10.1109/LGRS.2008.2001636

    Article  Google Scholar 

  19. Jiménez-Muñoz JC, Sobrino JA, Skokovi´c D, Mattar C, Cristóbal J (2014) Land surface temperature retrieval methods from landsat-8 thermal infrared sensor data. IEEE Geosci Remote Sens Lett 11(10):1840–1843. https://doi.org/10.1109/LGRS.2014.2312032

    Article  Google Scholar 

  20. Jin M, Li J, Wang C, Shang R (2015) A practical split-window algorithm for retrieving land surface temperature from landsat-8 data and a case study of an urban area in China. Remote Sens 7:4371–4390. https://doi.org/10.3390/rs70404371

    Article  Google Scholar 

  21. Joshi JP, Bhatt B (2012) Estimating temporal land surface temperature using remote sensing: a study of vadodara Urban Area, Gujarat. Int J Geol Earth Environ Sci 2(1):123–130

    Google Scholar 

  22. Kalma JD, McVicar TR, McCabe MF (2008) Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data. Surv Geophys 29(4):421–469

    Article  Google Scholar 

  23. Kalnay E, Cai M (2003) Impact of urbanization and land-use change on climate. Nature 423:528–531. https://doi.org/10.1038/nature01675

    Article  Google Scholar 

  24. Kerr YH, Lagouarde JP, Nerry F, Ottlé C (2000) Land surface temperature retrieval techniques and applications. In: Luvall JC (ed) Quattrochi DA. Thermal remote sensing in land surface processes, Boca Raton, Fla, CRC Press, pp 33–109

    Google Scholar 

  25. Li Z, Tang B, Wu H, Ren H, Yan G, Wan Z, Trigo IF, Sobrino JA (2013) Satellite-derived land surface temperature: current status and perspectives. Remote Sens Environ 131:14–37. https://doi.org/10.1016/j.rse.2012.12.008

    Article  Google Scholar 

  26. Li ZL, Tang R, Wan Z, Bi Y, Zhou C, Tang B, Yan G, Zhang X (2009) A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors 9(5):3801–3853. https://doi.org/10.3390/s90503801

    Article  Google Scholar 

  27. Li ZL, Zhang R, Sun X, Su H, Tang X, Zhu Z (2004) Experimental system for the study of the directional thermal emission of natural surfaces. Int J Remote Sens 25:195–204

    Article  Google Scholar 

  28. Lillesand TM, Kiefer RW, Chipman JW (2014) Remote sensing and image interpretation, 6th edn. John Wiley and Sons, New Delhi

    Google Scholar 

  29. Liu Y, Hiyama T, Yamaguchi Y (2006) Scaling of land surface temperature using satellite data: a case examination on ASTER and MODIS products over a heterogeneous terrain area. Remote Sens Environ 105:115–128

    Article  Google Scholar 

  30. Mao K, Qin Z, Shi J, Gong P (2005) A practical split-window algorithm for retrieving land-surface temperature from MODIS data. Int J Remote Sens 26(15):3181–3204. https://doi.org/10.1080/01431160500044713

    Article  Google Scholar 

  31. Meng X, Li H, Du Y, Liu, Q, Zhu J, Sun L (2016) Retrieving land surface temperature from Landsat 8 TIRS data using RTTOV and ASTER GED. In Proc Geosci Remote Sens Symp 4302–4305

  32. Prata AJ, Caselles V, Coll C, Sobrino JA, Ottlé C (1995) Thermal remote sensing of land surface temperature from satellites: current status and future prospects. Remote Sens Rev 12(3–4):175–224. https://doi.org/10.1080/02757259509532285

    Article  Google Scholar 

  33. Price JC (1983) Estimating surface temperatures from satellite thermal infrared data—A simple formulation for the atmospheric effect. Remote Sens Environ 13:353–361

    Article  Google Scholar 

  34. Qin Z, Karnieli A, Berliner P (2001) A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int J Remote Sensing 22(18):3719–3746. https://doi.org/10.1080/01431160010006971

    Article  Google Scholar 

  35. Rajeshwari A, Mani ND (2014) Estimation of land surface temperature of Dindigul District Using Landsat 8 Data. Int J Res Eng Tech 3(5):122–126. https://doi.org/10.15623/ijret.2014.0305025

    Article  Google Scholar 

  36. Ramanathan V, Crutzen P, Kiehl J, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294(5549):2119–2124. https://doi.org/10.1126/science.1064034

    Article  Google Scholar 

  37. Rongali G, Keshari AK, Gosain AK, Khosa R (2018) Split-window algorithm for retrieval of land surface temperature using Landsat 8 thermal infrared data. J Geovisualization Spatial Anal 2(2):1–19

    Google Scholar 

  38. Rozenstei O, Qin Z, Derimian Y, Karnieli A (2014) Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm. Sensors 14:5768–5780. https://doi.org/10.3390/s140405768

    Article  Google Scholar 

  39. Sobrino JA, Coll C, Caselles V (1991) Atmospheric correction for land surface temperature using NOAA-11 AVHRR Channels 4 and 5. Remote Sens Environ 38(1):19–34. https://doi.org/10.1016/0034-4257(91)90069-I

    Article  Google Scholar 

  40. Sobrino JA, Jiminez-Munoz JC, Paolini L (2003) Land surface temperature retrieval from LANDSAT TM 5. Remote Sens Environ 90(4):434–440. https://doi.org/10.1016/j.rse.2004.02.003

    Article  Google Scholar 

  41. Sobrino JA, Li ZL, Stoll MP, Becker F (1994) Improvements in the split-window technique for land surface temperature determination. IEEE Trans Geosci Remote Sens 32:243–253

    Article  Google Scholar 

  42. Sobrino JA, Li ZL, Stoll MP, Becker F (1996) Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data. Int J Remote Sens 17(11):2089–2114. https://doi.org/10.1080/01431169608948760

    Article  Google Scholar 

  43. Sobrino JA, Raissouni N (2000) Toward remote sensing methods for land cover dynamic monitoring: application to Morocco. Int J Remote Sens 21(2):353–366. https://doi.org/10.1080/014311600210876

    Article  Google Scholar 

  44. Song T et al (2015) Comparison of four algorithms to retrieve land surface temperature using Landsat 8 satellite. J Remote Sens 19:1993–2002

    Google Scholar 

  45. Subhashini S, Thirumaran K, Saravanan V, Alaguraja RA (2016) A comparative analysis of land surface retrieval methods using Landsat 7 and 8 data to study urban heat island effect in Madurai. Int J Earth Sci Eng 09(04):1397–1404

    Google Scholar 

  46. Sun Q, Jianjun Tan J, Yonghang XY (2010) An ERDAS image processing method for retrieving LST and describing urban heat evolution: a case study in the Pearl River Delta Region in South China. Environ Earth Sci 3(59):1047–1055. https://doi.org/10.1007/s12665-009-0096

    Article  Google Scholar 

  47. Tang B, Li ZL (2008) Estimation of instantaneous net surface longwave radiation from MODIS cloud-free data. Remote Sens Environ 112(9):3482–3492. https://doi.org/10.1016/j.rse.2008.04.004

    Article  Google Scholar 

  48. Ulivieri C, Castronuovo MM, Francioni R, Cardillo A (1994) A split window algorithm for estimating land surface temperature from satellites. Adv Space Res 14:59–65. https://doi.org/10.1016/0273-1177(94)90193-7

    Article  Google Scholar 

  49. Wan Z, Dozier JA (1996) generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans Geosci Remote Sens 34(4):892–905

    Article  Google Scholar 

  50. Wan Z, Wang P, Li X (2004) Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the Southern Great Plains, USA. Int J Remote Sens 25(1):61–72. https://doi.org/10.1080/0143116031000115328

    Article  Google Scholar 

  51. Wang F, Qin Z, Song C, Tu L, Karnieli A, Zhao S (2015) An improved mono-window algorithm for land surface temperature retrieval from Landsat 8 thermal infrared sensor data. Remote Sens 7(4):4268–4289. https://doi.org/10.3390/rs70404268

    Article  Google Scholar 

  52. Wang Y, Zhou J, Li M, Zhang X (2016) validation of landsat-8 TIRS land surface temperature retrieved from multiple algorithms in an extremely arid region. IEEE IGARSS 6934–6937

  53. Wibowo A, Rustanto A (2013) Spatial - temporal analysis of urban heat island in Tangerang City 45(2):101–115. https://doi.org/10.22146/ijg.4867

    Article  Google Scholar 

  54. Yu X, Guo X, Wu Z (2014) Land surface temperature retrieval from Landsat 8 TIRS- Comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sensing 6(10):9829–9852. https://doi.org/10.3390/rs6109829

    Article  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge four anonymous reviewers, the managing editor, and the editor-in-chief for their valuable time, productive comments, and suggestions during the review which helped in improving the overall quality of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SAA and FP prepared data, developed the methodology, analyzed, and wrote the original draft. AA critically reviewed and approved the final manuscript.

Corresponding author

Correspondence to Sk Ajim Ali.

Ethics declarations

Consent to Participate

NA.

Consent to Publish

NA.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.A., Parvin, F. & Ahmad, A. Retrieval of Land Surface Temperature from Landsat 8 OLI and TIRS: A Comparative Analysis Between Radiative Transfer Equation-Based Method and Split-Window Algorithm. Remote Sens Earth Syst Sci 6, 1–21 (2023). https://doi.org/10.1007/s41976-022-00079-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41976-022-00079-0

Keywords

Navigation