Skip to main content
Log in

Chemical Valorization of Cashew Nut Shell Waste

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Cashew nut shells are agro-wastes produced from cashew nut processing factories and contain about 30–35 wt% oil called cashew nut shell liquid (CNSL). This liquid is a mixture of four potential compounds, namely anacardic acid, cardanol, cardol and 2-methyl cardol. Various reactions have been developed to convert the components of cashew nut shell liquid into industrially important chemicals, and these materials are herein described. Such reactions employed in the transformation include transfer hydrogenation reactions, isomerization reactions, metathesis reactions, carbonylation reactions, polymerization reactions, isomerizing metathesis reaction, and isomerizing carbonylation reactions. Through these descriptions, one realizes that cashew nut shells are not a waste, but they are rather a good source of a potential liquid, CNSL, which is a promising renewable resource for synthesizing various industrial chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Faostat 2016

Fig. 2
Fig. 3
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10

Similar content being viewed by others

References

  1. Rabany C, Rullier N, Ricau P 2015 The African cashew sector in 2015. General trends and country profiles. https://www.rongead.org p 1–37, Accessed on 21 Oct 2016

  2. Cashewinfo.com (2014) Cashew handbook 2014-global perspective, 4th edn. Foretell Business Solutions Private Limited, Bengaluru, pp 13–139

    Google Scholar 

  3. Kumar PP, Paramashivappa R, Vithayathil PJ, Rao PVS, Rao AS (2002) Process for isolation of cardanol from technical cashew (Anacardium occidentale L) nut shell liquid. J Agric Food Chem 50:4705–4708

    Article  CAS  Google Scholar 

  4. Tyman JHP, Johnson RA, Muir M, Rokhagar R (1989) The extraction of natural cashew nut-shell liquid from the cashew nut (Anacardium occidentale). JAOCS 66:553–557

    Article  CAS  Google Scholar 

  5. Kumar PS, Kumar NR, Sivakumar R, Kaushik (2009) Experimentation on solvent extraction of polyphenols from natural waste. J Mater Sci 44:5894–5899

    Article  Google Scholar 

  6. Idah PA, Simeon MI, Mohammed MA (2014) Extraction and characterization of cashew nut (Anacardium occidentale) oil and cashew shell liquid oil. Acad Res Int 5(3):50–54

    Google Scholar 

  7. Yuliana M, Tranthi NY, Ju Y (2012) Effect of extraction methods on characteristic and composition of Indonesian cashew nut shell liquid. Ind Crop Prod 35:230–236

    Article  CAS  Google Scholar 

  8. Patel RN, Bandyopadhyay S, Ganesh A (2006) Extraction of cashew (Anacardium occidentale) nut shell liquid using supercritical carbon dioxide. Bioresour Technol 97:847–853

    Article  CAS  Google Scholar 

  9. Smith RL Jr, Malaluan RM, Setianto WB, Inomata H, Arai K (2003) Separation of cashew (Anacardium occidentale L.) nut shell liquid with supercritical carbon dioxide. Biores Technol 88:1–7

    Article  CAS  Google Scholar 

  10. Gandhi TS, Dholakiya BZ, Patel MR (2013) Extraction protocol for isolation of CNSL by using protic and aprotic solvents from cashew nut and study of their physico-chemical parameter. Pol J Chem Tech 15(4):24–27

    Article  CAS  Google Scholar 

  11. Garkal DJ, Bhande RS (2014) Review on Extraction and Isolation of Cashew Nut Shell Liquid. IJIERT. 1(1):1–8

    Google Scholar 

  12. Sivakumar S, Venkatachalam R, Nedunchezhian N, Sivakumar P, Rajendran P (2014) Processing of cashew nut shell and feasibility of its oil as bio fuel in compression ignition engine. JCHPS (Special Issue) 4:133–135

    Google Scholar 

  13. Rodrigues FHA, Franca FCF, Souza JRR, Ricardo NMPS, Feitosa JPA (2011) Comparison between physico-chemical properties of the technical cashew nut shell liquid (CNSL) and those natural extracted from solvent and pressing. Polímeros 21:156–160

    Article  Google Scholar 

  14. Himabindu T, Raguram V, Kum ST (2015) Review on various methods of extraction of cashew nut shell liquid and isolation of anacardic acid. Int J Inst Pharm Life Sci 5:293–308

    Google Scholar 

  15. Julis J, Bartlett SA, Baader S, Beresford N, Routledge EJ, Cazin CSJ, Cole- Hamilton DJ (2014) Selective ethenolysis and oestrogenicity of compounds from cashew nut shell liquid. Green Chem 16:2846–2856

    Article  CAS  Google Scholar 

  16. Shinde T, Varga V, Pola M, Hora M, Balcar H (2014) Metathesis of cardanol over Ru catalysts supported on mesoporous molecular sieve SBA-15. Appl Catal A 478:138–145

    Article  CAS  Google Scholar 

  17. Mgaya JE, Bartlett SA, Mubofu EB, Mgani QA, Slawin AMZ, Pogorzelec PJ, Cole-Hamilton DJ (2016) Synthesis of bifunctional monomers by the palladium-catalyzed carbonylation of cardanol and its derivatives. ChemCatChem 8:751–757

    Article  CAS  Google Scholar 

  18. Mgaya JE, Mubofu EB, Mgani QA, Cordes DB, Slawin AM, Cole-Hamilton DJ (2015) Isomerization of anacardic acid: A possible route to the synthesis of an unsaturated benzolactone and a kairomone. Eur J Lipid Sci Technol 117:190–199

    Article  CAS  Google Scholar 

  19. Graham MB, Tyman JHP (2002) Ozonization of phenols from Anacardium occidentale (cashew). JAOCS 79:725–732

    Article  CAS  Google Scholar 

  20. Besteti MD, Souza FG Jr, Freire DMG (2014) Production of core-shell polymer particles-containing cardanol by semibatch combined suspension/emulsion polymerization. Polym Eng Sci 54:1222–1229

    Article  CAS  Google Scholar 

  21. Kanehashi S, Yokoyama K, Masuda S, Kidesaki T, Nagai K, Miyakoshi T (2013) Preparation and characterization of cardanol-based epoxy resin for coating at room temperature curing. J Appl Polym Sci. https://doi.org/10.1002/APP.39382

    Google Scholar 

  22. Shukla P, Srivastava D (2014) Reaction kinetics of esterification of phenol-cardanol based epoxidized novolac resins and methacrylic acid. Int J Plast Technol 18:1–15

    Article  CAS  Google Scholar 

  23. Misra AK, Pandey GN (1985) Kinetics of alkaline-catalyzed cardanol- formaldehyde reaction. 11. mechanism of the reaction. J Appl Polym Sci 30:969–977

    Article  CAS  Google Scholar 

  24. Chikkali S, Mecking S (2012) Refining of plant oils to chemicals by olefin metathesis. Angew Chem Int Ed 51:5802–5808

    Article  CAS  Google Scholar 

  25. Espinos LMD, Meier MAR (2011) Plant oils: the perfect renewable resource for polymer science? Eur Polym J 47:837–852

    Article  Google Scholar 

  26. Mmongoyo JA, Mgani QA, Mdachi SJM, Pogorzelec PJ (2013) Synthesis of a kairomone and other chemicals from cardanol, a renewable resource. Eur J Lipid Sci Technol 114:1183–1192

    Article  Google Scholar 

  27. Baader S, Podsiadly PE, Hamilton DJCH, Goossen LJ (2014) Synthesis of tsetse fly attractants from a cashew nut shell extract by isomerising metathesis. Green Chem 16:4885–4890

    Article  CAS  Google Scholar 

  28. Furst MRL, Goff RL, Quinzler D, Mecking S, Botting CH, Cole-Hamilton DJ (2012) Polymer precursors from catalytic reactions of natural oils. Green Chem 5:472–477

    Article  Google Scholar 

  29. Quinzler D, Mecking S (2010) Linear semicrystalline polyesters from fatty acids by complete feedstock molecule utilization. Angew Chem 122:4402–4404

    Article  Google Scholar 

  30. Rodriguez CJ, Foster DF, Eastham R, Cole-hamilton DJ (2004) Highly selective formation of linear esters from terminal and internal alkenes catalysed by palladium complexes of bis-(di-tert-butylphosphinomethyl)benzene. Chem Commun 15:1720–1721

    Article  Google Scholar 

  31. Rodriguez CJ, Eastham GR, Cole-Hamilton DJ (2005) Dicarboxylic acid esters from the carbonylation of unsaturated esters under mild conditions. Inorg Chem Commun 8:878–881

    Article  Google Scholar 

  32. Neuse EW (1973) Polymers for potential use as charring ablators under hyperthermal re-entry conditions: a review of recent developments. Mater Sci Eng 11:121–150

    Article  CAS  Google Scholar 

  33. Morgan AB, Gilman JW (2013) An overview of flame retardancy of polymeric materials: application, technology, and future directions. Fire Mater 37:259–279

    Article  CAS  Google Scholar 

  34. Kashiwagi T, Gilman JW, Nyden MR (1997) Polymer combustion and new flame retardants. Eur Meet Fire Retard Polym Mat 224:176–202

    Google Scholar 

  35. Suresh KI, Kishanprasad VS (2005) Synthesis, structure, and properties of novel polyols from cardanol and developed polyurethanes. Ind Eng Chem Res 44:4504–4512

    Article  CAS  Google Scholar 

  36. Bhunia HP, Basak A, Chaki TK, Nando GB (2000) Synthesis and characterization of polymers from cashewnut shell liquid: a renewable resource V. Synth Copolyest 36:1157–1165

    CAS  Google Scholar 

  37. Voirin C, Caillol S, Sadavarte NV, Tawade BV, Boutevin B, Wadgaonkar PP (2014) Polymer Chemistry Functionalization of cardanol: towards biobased polymers and additives. Polym Chem 5:3142–3162

    Article  CAS  Google Scholar 

  38. Jaillet F, Darroman E, Boutevin B, Caillol S (2016) A chemical platform approach on cardanol oil: from the synthesis of building blocks to polymer synthesis. OCL 23(5):1–7

    Article  Google Scholar 

  39. Chuayjuljit S, Rattanametangkool P, Potiyaraj P (2006) Preparation of cardanol—formaldehyde resins from cashew nut shell liquid for the reinforcement of natural rubber. J Appl Polym Sci 104:1997–2002

    Article  Google Scholar 

  40. Manjula S, Pillai CKS, Kumar VG (1990) Thermal characterization of cardanolformaldehyde resins and cardanol-formaldehyde/poly(methyl methacrylate) semi-interpenetrating polymer networks. Thermochim Acta 159:255–266

    Article  CAS  Google Scholar 

  41. Cardona F, Moscou C (2009) Synthesis and characterization of modified phenolic resins for composites with enhanced mechanical properties. In: 20th Australasian Conference on the Mechanics of Structures and Materials (ACMSM20): Futures in Mechanics of Structures and Materials, Toowoomba, Australia, p1–6

  42. Yadav R, Srivastava D (2008) Studies on cardanol-based epoxidized novolac resin. Chem Chem Technol 2(3):1–12

    Google Scholar 

  43. Gopalakrishnan S, Fernando TL (2011) Bio-based thermosetting tough polyurethanes. Der Chem Sin 2:54–64

    CAS  Google Scholar 

  44. Mlowe S, Pullabhotla RR, Mubofu EB, Ngassapa F, Revaprasadu N (2014) Low temperature synthesis of anacardic-acid-capped cadmium chalcogenide nanoparticles. Int Nano Lett 4(10):1–6

    CAS  Google Scholar 

  45. Mubofu EB, Mlowe S, Revaprasadu N (2016) Cashew nut shells as source of chemicals for preparation of chalcogenide nanoparticles. Nanosystems 7(4):724–727

    Google Scholar 

  46. Kyobe JW, Mubofu EB, Makame YMM (2015) CdSe quantum dots capped with naturally occurring biobased oils. New J Chem 39:1–9. https://doi.org/10.1039/C5NJ01460C

    Article  Google Scholar 

  47. Nyamen LD, Revaprasadu N, Ndifon PT (2014) Low temperature synthesis of PbS and CdS nanoparticles in olive oil. Mater Sci Semicond Process 27:191–196

    Article  Google Scholar 

  48. Sapra S, Rogach AL, Feldmann J (2006) Phosphine-free synthesis of monodisperse CdSe nanocrystals in olive oil. J Mater Chem 16:3391–3395

    Article  CAS  Google Scholar 

  49. Chen J, Song JL, Sun XW, Deng WQ, Jiang CY, Lei W, Huang JH, Liu RS (2009) An oleic acid-capped CdSe quantum-dot sensitized solar cell. Appl Phys Lett 94:153115

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Mubofu.

Additional information

This article is part of the Topical Collection “Chemistry and Chemical Technologies in Waste Valorization”; edited by Carol Sze Ki LIN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mubofu, E.B., Mgaya, J.E. Chemical Valorization of Cashew Nut Shell Waste. Top Curr Chem (Z) 376, 8 (2018). https://doi.org/10.1007/s41061-017-0177-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-017-0177-9

Keywords

Navigation