Skip to main content
Log in

Fluorescence Sensing of Inorganic Phosphate and Pyrophosphate Using Small Molecular Sensors and Their Applications

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

The aim of this contribution is to provide an introduction and a brief summary of the principle of fluorescence molecular sensors specific to inorganic phosphate (Pi) and inorganic pyrophosphate (PPi) as well as their applications. In our introduction we describe the impact of both Pi and PPi in the living organism and in the environment, followed by a description of the principle of fluorescence molecular sensors and the sensing mechanism in solution. We then focus on exciting research which has emerged in recent years on the development of fluorescent sensors specific to Pi and PPi, categorized by chemical interactions between the sensor and the target molecule, such as hydrogen bonding, coordination chemistry, displacement assay, aggregation induced emission or quenching, and chemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lee GJ, Marks J (2015) Intestinal phosphate transport: a therapeutic target in chronic kidney disease and beyond? Pediatr Nephrol 30:363–371

    Article  Google Scholar 

  2. Hansen NM, Felix R, Bisaz S, Fleisch H (1976) Aggregation of hydroxyapatite crystals. Biochim Biophys Acta 451:549–559

    Article  CAS  Google Scholar 

  3. Crook M, Swaminathan R (1996) Disorders of plasma phosphate and indications for its measurement. Ann Clin Biochem 33:376–396

    Article  CAS  Google Scholar 

  4. Prie D, Beck L, Friedlander G, Silve C (2004) Sodium-phosphate cotransporters, nephrolithiasis and bone demineralization. Curr Opin Nephrol Hypertens 13:675–681

    Article  CAS  Google Scholar 

  5. Knochel JP, Barcenas C, Cotton JR, Fuller TJ, Haller R, Carter NW (1978) Hypophosphatemia and rhabdomyolysis. J Clin Invest 62:1240–1246

    Article  CAS  Google Scholar 

  6. Knochel JP (1977) The pathophysiology and clinical characteristics of severe hypophosphatemia. Arch Intern Med 137:203–220

    Article  CAS  Google Scholar 

  7. Khoshniat S, Bourgine A, Julien M, Weiss P, Guicheux J, Beck L (2011) The emergence of phosphate as a specific signaling molecule in bone and other cell types in mammals. Cell Mol Life Sci 68:205–218

    Article  CAS  Google Scholar 

  8. Rutecki GW, Cugino A, Jarjoura D, Kilner JF, Whittier FC (1997) Nephrologists’ subjective attitudes towards end-of-life issues and the conduct of terminal care. Clin Nephrol 48:173–180

    CAS  Google Scholar 

  9. Weisinger JR, Bellorin-Font E (1998) Magnesium and phosphorus. Lancet 352:391–396

    Article  CAS  Google Scholar 

  10. Shiber JR, Mattu A (2002) Serum phosphate abnormalities in the emergency department. J Emerg Med 23:395–400

    Article  Google Scholar 

  11. Hruska KA, Mathew S, Lund RJ, Memon I, Saab G (2009) The pathogenesis of vascular calcification in the chronic kidney disease mineral bone disorder: the links between bone and the vasculature. Semin Nephrol 29:156–165

    Article  CAS  Google Scholar 

  12. Kanbay M, Goldsmith D, Akcay A, Covic A (2009) Phosphate - the silent stealthy cardiorenal culprit in all stages of chronic kidney disease: a systematic review. Blood Purif 27:220–230

    Article  CAS  Google Scholar 

  13. Hruska KA, Mathew S, Lund R, Qiu P, Pratt R (2008) Hyperphosphatemia of chronic kidney disease. Kidney Int 74:148–157

    Article  CAS  Google Scholar 

  14. Devlin TM (2010) Textbook of biochemistry with clinical correlations, 7th edn. Wiley, New York

    Google Scholar 

  15. Heinonen JK (2001) Biological role of inorganic pyrophosphate, 1st edn. Kluwer, Dordrecht

    Book  Google Scholar 

  16. Florence WLT (2012) Genetics and mechanisms of crystal deposition in calcium pyrophosphate deposition disease. Curr Rheumatol Rep 14:155–160

    Article  CAS  Google Scholar 

  17. Costello JC, Rosenthal AK, Kurup IV, Masuda I, Medhora M, Ryan LM (2011) Parallel regulation of extracellular ATP and inorganic pyrophosphate: roles of growth factors, transduction modulators, and ANK. Connect Tissue Res 52:139–146

    Article  CAS  Google Scholar 

  18. Rosenthal AK, Gohr CM, Mitton-Fitzgerald E, Lutz MK, Dubyak GR, Ryan LM (2013) The progressive ankylosis gene product ANK regulates extracellular ATP levels in primary articular chondrocytes. Arthritis Res Ther 15:R154

    Article  CAS  Google Scholar 

  19. Rosenthal AK, Ryan LM (2016) Calcium pyrophosphate deposition disease. N Engl J Med 374:2575–2584

    Article  CAS  Google Scholar 

  20. Chen M, Graedel TE (2016) A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Glob Environ Change 36:139–152

    Article  Google Scholar 

  21. Mason CF (1991) Biology of freshwater pollution. Longman, New York

    Google Scholar 

  22. Hargrove AE, Nieto S, Zhang T, Sessler JL, Anslyn EV (2011) Artificial receptors for the recognition of phosphorylated molecules. Chem Rev 111:6603–6782

    Article  CAS  Google Scholar 

  23. Hirsch AKH, Fischer FR, Diederich F (2007) Phosphate recognition in structural biology. Angew Chem Int Ed 46:338–352

    Article  CAS  Google Scholar 

  24. Kim SK, Lee DH, Hong J-I, Yoon J (2009) Chemosensors for pyrophosphate. Acc Chem Res 42:23–31

    Article  CAS  Google Scholar 

  25. Lee S, Yuen KKY, Jolliffe KA, Yoon J (2015) Fluorescent and colorimetric chemosensors for pyrophosphate. Chem Soc Rev 44:1749–1762

    Article  CAS  Google Scholar 

  26. Busschaert N, Caltagirone C, Rossom WV, Gale PA (2015) Applications of supramolecular anion recognition. Chem Rev 115:8038–8155

    Article  CAS  Google Scholar 

  27. Wu J, Liu W, Ge J, Zhang H, Wang P (2011) New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem Soc Rev 40:3483–3495

    Article  CAS  Google Scholar 

  28. Ngo HT, Liu X, Jolliffe KA (2012) Anion recognition and sensing with Zn(II)–dipicolylamine complexes. Chem Soc Rev 41:4928–4965

    Article  CAS  Google Scholar 

  29. Pak YL, Swamy KMK, Yoon J (2015) Recent progress in fluorescent imaging probes. Sensors 15:24374–24396

    Article  Google Scholar 

  30. Yoon J, Kim SK, Singh NJ, Kim KS (2006) Imidazolium receptors for the recognition of anions. Chem Soc Rev 35:355–360

    Article  CAS  Google Scholar 

  31. Gale PA (2006) Structural and molecular recognition studies with acyclic anion receptors. Acc Chem Res 39:465–475

    Article  CAS  Google Scholar 

  32. Schmidtchen FP, Berger M (1997) Artificial organic host molecules for anions. Chem Rev 97:1609–1646

    Article  CAS  Google Scholar 

  33. Marcus Y, Rashin A (1994) A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes. Biophys Chem 51:111–127

    Article  CAS  Google Scholar 

  34. Czarnik AW (1994) Chemical communication in water using fluorescent chemosensors. Acc Chem Res 27:302–308

    Article  CAS  Google Scholar 

  35. Chen K-H, Yang J-S, Hwang C-Y, Fang J-M (2008) Phospholipid-induced aggregation and anthracene excimer formation. Org Lett 10:4401–4404

    Article  CAS  Google Scholar 

  36. Lee M, Moon JH, Jun EJ, Kim G, Kwon Y-U, Lee JY, Yoon J (2014) A tetranaphthoimidazolium receptor as a fluorescent chemosensor for phytate. Chem Commun 50:5851–5853

    Article  CAS  Google Scholar 

  37. Zheng F, Guo S, Zeng F, Li J, Wu S (2014) Ratiometric fluorescent probe for alkaline phosphatase based on betaine-modified polyethylenimine via excimer/monomer conversion. Anal Chem 86:9873–9879

    Article  CAS  Google Scholar 

  38. Kumar R, Srivastava A (2016) Anion binding-induced white light emission using a water-tolerant fluorescent molecular tweezer. Chem Eur J 22:3224–3229

    Article  CAS  Google Scholar 

  39. Nishizawa S, Kato Y, Teramae N (1999) Fluorescence sensing of anions via intramolecular excimer formation in a pyrophosphate-induced self-assembly of a pyrene-functionalized guanidinium receptor. J Am Chem Soc 121:9463–9464

    Article  CAS  Google Scholar 

  40. Qian X, Xiao Y, Xu Y, Guo X, Qian J, Zhu W (2010) “Alive’’ dyes as fluorescent sensors: fluorophore, mechanism, receptor and images in living cells. Chem Commun 46:6418–6436

    Article  CAS  Google Scholar 

  41. Wu FY, Li Z, Guo L, Wang X, Lin MH, Zhao YF, Jiang YB (2006) A unique NH-spacer for N-benzamidothiourea based anion sensors. Substituent effect on anion sensing of the ICT dual fluorescent N-(p-dimethylaminobenzamido)-N-arylthioureas. Org Biomol Chem 4:624–630

    Article  CAS  Google Scholar 

  42. Steed JW (2009) Coordination and organometallic compounds as anion receptors and sensors. Chem Soc Rev 38:506–519

    Article  CAS  Google Scholar 

  43. Ojida A, Mito-oka Y, Inoue M, Hamachi I (2002) First artificial receptors and chemosensors toward phosphorylated peptide in aqueous solution. J Am Chem Soc 124:6256–6258

    Article  CAS  Google Scholar 

  44. Ojida A, Mito-oka Y, Sada K, Hamachi I (2004) Molecular recognition and fluorescence sensing of monophosphorylated peptides in aqueous solution by bis(Zn(II)-dipicolylamine)-based artificial receptors. J Am Chem Soc 126:2454–2463

    Article  CAS  Google Scholar 

  45. Elangannan A, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Definition of the hydrogen bond. Pure Appl Chem 83:1637–1641

    Google Scholar 

  46. S-i Kondo, Takai R (2013) Selective detection of dihydrogen phosphate anion by fluorescence change with tetraamide-based receptors bearing isoquinolyl and quinolyl moieties. Org Lett 15:538–541

    Article  CAS  Google Scholar 

  47. Zhang D, Jiang X, Yang H, Su Z, Gao E, Martinez A, Gao G (2013) Novel benzimidazolium–urea-based macrocyclic fluorescent sensors: synthesis, ratiometric sensing of H2PO4 and improvement of the anion binding performance via a synergistic binding strategy. Chem Commun 49:6149–6151

    Article  CAS  Google Scholar 

  48. Zhang D, Jiang X, Yang H, Martinez A, Feng M, Donga Z, Gao G (2013) Acridine-based macrocyclic fluorescent sensors: self-assembly behavior characterized by crystal structures and a tunable bathochromic-shift in emission induced by H2PO4 via adjusting the ring size and rigidity. Org Biomol Chem 11:3375–3381

    Article  CAS  Google Scholar 

  49. Martí-Centelles V, Burguete MI, Galindo F, Izquierdo MA, Kumar DK, White AJP, Luis SV, Vilar R (2012) Fluorescent acridine-based receptors for H2PO4 . J Org Chem 77:490–500

    Article  CAS  Google Scholar 

  50. Gong W, Zhang Q, Wang F, Gao B, Lin Y, Ning G (2012) Selective sensing of H2PO4 (Pi) driven by the assembly of anthryl pyridinium ligands. Org Biomol Chem 10:7578–7583

    Article  CAS  Google Scholar 

  51. Caltagirone C, Bazzicalupi C, Isaia F, Light ME, Lippolis V, Montis R, Murgia S, Olivari M, Picci G (2013) A new family for bis-ureidic receptors for pyrophosphate optical sensing. Org Biomol Chem 11:2445–2451

    Article  CAS  Google Scholar 

  52. Casula A, Bazzicalupi C, Bettoschi A, Cadoni E, Coles SJ, Horton PN, Isaia F, Lippolis V, Mapp LK, Marini GM, Montis R, Scorciapino MA, Caltagirone C (2016) Fluorescent asymmetric bis-ureas for pyrophosphate recognition in pure water. Dalton Trans 45:3078–3085

    Article  CAS  Google Scholar 

  53. Sanchez G, Espinosa A, Curiel D, Tarraga A, Molina P (2013) Bis(carbazolyl)ureas as selective receptors for the recognition of hydrogen pyrophosphate in aqueous media. J Org Chem 78:9725–9737

    Article  CAS  Google Scholar 

  54. Yuan Y, Gao G, Jiang ZL, You JS, Zhou ZY, Yuan DQ, Xie RG (2002) Synthesis and selective anion recognition of imidazolium cyclophanes. Tetrahedron 58:8993–8999

    Article  CAS  Google Scholar 

  55. Bhalla V, Vij V, Kumar M, Sharma PR, Kaur T (2012) Recognition of adenosine monophosphate and H2PO4 using zinc ensemble of new hexaphenylbenzene derivative: potential bioprobe and multichannel keypad system. Org Lett 14:1012–1015

    Article  CAS  Google Scholar 

  56. Ni XL, Zeng X, Redshaw C, Yamato T (2011) Ratiometric fluorescent receptors for both Zn2+ and H2PO4 ions based on a pyrenyl-linked triazole-modified homooxacalix[3]arene: a potential molecular traffic signal with an R-S latch logic circuit. J Org Chem 76:5696–5702

    Article  CAS  Google Scholar 

  57. Lee HN, Swamy KMK, Kim SK, Kwon J-Y, Kim Y, Kim S-J, Yoon YJ, Yoon J (2007) Simple but effective way to sense pyrophosphate and inorganic Phosphate by fluorescence changes. Org Lett 9:243–246

    Article  CAS  Google Scholar 

  58. Nadella S, Selvakumar PM, Suresh E, Subramanian PS, Albrecht M, Giese M, Fröhlich R (2012) Lanthanide(III) complexes of bis-semicarbazone and bis-imine-substituted phenanthroline ligands: solid-state structures, photophysical properties, and anion sensing. Chem Eur J 18:16784–16792

    Article  CAS  Google Scholar 

  59. Ganjali MR, Hosseini M, Memari Z, Faridbod F, Norouzi P, Goldooz H, Badiei A (2011) Selective recognition of monohydrogen phosphate by fluorescence enhancement of a new cerium complex. Anal Chim Acta 708:107–110

    Article  CAS  Google Scholar 

  60. Nadella S, Sahoo J, Subramanian PS, Sahu A, Mishra S, Albrecht M (2014) Sensing of phosphates by using luminescent EuIII and TbIII complexes: application to the microalgal cell Chlorella vulgaris. Chem Eur J 20:6047–6053

    Article  CAS  Google Scholar 

  61. Mahapatra AK, Ali SS, Maiti K, Manna SK, Maji R, Mondal S, Uddin MdR, Mandal S, Sahoo P (2015) Aminomethylpyrene-based imino-phenols as primary fluorescence switch-on sensors for Al3+ in solution and in Vero cells and their complexes as secondary recognition ensembles toward pyrophosphate. RSC Adv 5:81203–81211

    Article  CAS  Google Scholar 

  62. Kim HJ, Lee JH, Hong J-I (2011) Highly sensitive chemosensor for detection of PPi with improved detection limit. Tetrahedron Lett 52:4944–4946

    Article  CAS  Google Scholar 

  63. Kimura E, Shiota T, Koike T, Shiro M, Kodama M (1990) A zinc(II) complex of 1,5,9-triazacyclododecane ([12]aneN3) as a model for carbonic anhydrase. J Am Chem Soc 112:5805–5811

    Article  CAS  Google Scholar 

  64. Kimura E, Aoki S, Koike T, Shiro M (1997) A tris(ZnII − 1,4,7,10-tetraazacyclododecane) complex as a new receptor for phosphate dianions in aqueous solution. J Am Chem Soc 119:3068–3076

    Article  CAS  Google Scholar 

  65. Bobyr E, Lassila JK, Wiersma-Koch HI, Fenn TD, Lee JJ, Nikolic-Hughes I, Hodgson KO, Rees DC, Hedman B, Herschlag D (2012) High-resolution analysis of Zn2+ coordination in the alkaline phosphatase superfamily by EXAFS and X-ray crystallography. J Mol Biol 415:102–117

    Article  CAS  Google Scholar 

  66. Kim JS, Quang DT (2007) Calixarene-derived fluorescent probes. Chem Rev 107:3780–3799

    Article  CAS  Google Scholar 

  67. Mizukami S, Nagano T, Urano Y, Odani A, Kikuchi K (2002) A fluorescent anion sensor that works in neutral aqueous solution for bioanalytical application. J Am Chem Soc 124:3920–3925

    Article  CAS  Google Scholar 

  68. Yang C, Fu L-M, Wang Y, Zhang J-P, Wong WT, Ai X-C, Qiao YF, Zou BS, Gui L-L (2004) A highly luminescent europium complex showing visible-light-sensitized red emission: direct observation of the singlet pathway. Angew Chem Int Ed 43:5010–5013

    Article  CAS  Google Scholar 

  69. Zhang JF, Kim S, Han JH, Lee S-J, Pradhan T, Cao QY, Lee SJ, Kang C, Kim JS (2011) Pyrophosphate-selective fluorescent chemosensor based on 1, 8-naphthalimide-DPA-Zn(II) complex and its application for cell imaging. Org Lett 13:5294–5297

    Article  CAS  Google Scholar 

  70. Lin J-R, Chu C-J, Venkatesan P, Wu S-P (2015) Zinc(II) and pyrophosphate selective fluorescence probe and its application to living cell imaging. Sens Actuat B 207:563–570

    Article  CAS  Google Scholar 

  71. Jiao S-Y, Li K, Xin Wang X, Huang Z, Pu L, Yu X-Q (2015) Making pyrophosphate visible: the first precipitable and real-time fluorescent sensor for pyrophosphate in aqueous solution. Analyst 140:174–181

    Article  CAS  Google Scholar 

  72. Ojida A, Miyahara Y, Wongkongkatep J, S-i Tamaru, Sada K, Hamachi I (2006) Design of dual-emission chemosensors for ratiometric detection of ATP derivatives. Chem Asian J 1:555–563

    Article  CAS  Google Scholar 

  73. Bhuyan M, Katayev E, Stadlbauer S, Nonaka H, Ojida A, Hamachi I, König B (2011) Rigid luminescent bis-Zinc(II)–bis-cyclen complexes for the detection of phosphate anions and non-covalent protein labeling in aqueous solution. Eur J Org Chem 2011 (15):2807–2817

  74. Mesquita LM, André V, Esteves CV, Palmeira T, Berberan-Santos MN, Mateus P, Delgado R (2016) Dinuclear Zinc(II) macrocyclic complex as receptor for selective fluorescence sensing of pyrophosphate. Inorg Chem 55:2212–2219

    Article  CAS  Google Scholar 

  75. Bhowmik S, Ghosh BN, Marjomäki V, Rissanen K (2014) Nanomolar pyrophosphate detection in water and in a self-assembled hydrogel of a simple terpyridine–Zn2+ complex. J Am Chem Soc 136:5543–5546

    Article  CAS  Google Scholar 

  76. Kittiloespaisan E, Takashima I, Kiatpathomchai W, Wongkongkatep J, Ojida A (2014) Coordination ligand exchange of a xanthene probe–Ce(III) complex for selective fluorescence sensing of inorganic pyrophosphate. Chem Commun 50:2126–2128

    Article  CAS  Google Scholar 

  77. Svane S, Kjeldsen F, McKee V, McKenzie CJ (2015) The selectivity of water-based pyrophosphate recognition is tuned by metal substitution in dimetallic receptors. Dalton Trans 44:11877–11886

    Article  CAS  Google Scholar 

  78. Nguyen BT, Anslyn EV (2006) Indicator-displacement assays. Coordin Chem Rev 250:3118–3127

    Article  CAS  Google Scholar 

  79. You L, Zha D, Anslyn EV (2015) Recent advances in supramolecular analytical chemistry using optical sensing. Chem Rev 115:7840–7892

    Article  CAS  Google Scholar 

  80. Meng Q, Wang Y, Yang M, Zhang R, Wang R, Zhang Z (2015) A new fluorescent chemosensor for highly selective and sensitive detection of inorganic phosphate (Pi) in aqueous solution and living cells. RSC Adv 5:53189–53197

    Article  CAS  Google Scholar 

  81. Wu J, Gao Y, Lu J, Hu J, Ju Y (2015) A steroid–coumarin conjugate for cascade recognition of copper ion and dihydrogen phosphate: microstructural features and IMPLICATION logic gate properties. Sens Actuat B 206:516–523

    Article  CAS  Google Scholar 

  82. Wu J, Zhao X, Gao Y, Hu J, Ju Y (2015) A steroid-salen conjugate for zinc ion recognition and its applications in test-strips, living cells imaging, and cascade recognition for dihydrogen phosphate. Sens Actuat B 221:334–340

    Article  CAS  Google Scholar 

  83. Jiao S-Y, Li K, Zhang W, Liu Y-H, Huang Z, Yu X-Q (2015) Cd(II)-terpyridine-based complex as a ratiometric fluorescent probe for pyrophosphate detection in solution and as an imaging agent in living cells. Dalton Trans 44:1358–1365

    Article  CAS  Google Scholar 

  84. Zhu W, Huang X, Guo Z, Wu X, Yu H, Tian H (2012) A novel NIR fluorescent turn-on sensor for the detection of pyrophosphate anion in complete water system. Chem Commun 48:1784–1786

    Article  CAS  Google Scholar 

  85. Que EL, Chang CJ (2006) A smart magnetic resonance contrast agent for selective copper sensing. J Am Chem Soc 128:15942–15943

    Article  CAS  Google Scholar 

  86. Datta BK, Mukherjee S, Kar C, Ramesh A, Das G (2013) Zn2+ and pyrophosphate sensing: selective detection in physiological conditions and application in DNA-based estimation of bacterial cell numbers. Anal Chem 85:8369–8375

    Article  CAS  Google Scholar 

  87. Qiang J, Chang C, Zhu Z, Wei T, Yu W, Wang F, Yin J, Wang Y, Zhang W, Xie J, Chen X (2016) A dinuclear-copper(II) complex-based sensor for pyrophosphate and its applications to detecting pyrophosphatase activity and monitoring polymerase chain reaction. Sens Actuat B 233:591–598

    Article  CAS  Google Scholar 

  88. Butler SJ, Jolliffe KA (2012) Selective pyrophosphate recognition by cyclic peptide receptors in physiological saline. Chem Asian J 7:2621–2628

    Article  CAS  Google Scholar 

  89. Hanshaw RG, Hilkert SM, Jiang H, Smith BD (2004) An indicator displacement system for fluorescent detection of phosphate oxyanions under physiological conditions. Tetrahedron Lett 45:8721–8724

    Article  CAS  Google Scholar 

  90. McDonough MJ, Reynolds AJ, Lee WYG, Jolliffe KA (2006) Selective recognition of pyrophosphate in water using a backbone modified cyclic peptide receptor. Chem Commun 2006: 2971–2973. doi: 10.1039/B606917G

  91. Luo J, Xie Z, Lam JWY, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang BZ (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun 2001:1740–1741. doi: 10.1039/B105159H

  92. Chao D, Ni S (2016) Nanomolar pyrophosphate detection and nucleus staining in living cells with simple terpyridine–Zn(II) complexes. Sci Rep 6:26477

    Article  CAS  Google Scholar 

  93. Wang J-H, Xiong J-B, Zhang X, Song S, Zhu Z-H, Zheng Y-S (2015) Tetraphenylethylene imidazolium macrocycle: synthesis and selective fluorescence turn-on sensing of pyrophosphate anions. RSC Adv 5:60096–60100

    Article  CAS  Google Scholar 

  94. Yan X, Wang M, Cook TR, Zhang M, Saha ML, Zhou Z, Li X, Huang F, Stang PJ (2016) Light-emitting superstructures with anion effect: coordination-driven self-assembly of pure tetraphenylethylene metallacycles and metallacages. J Am Chem Soc 138:4580–4588

    Article  CAS  Google Scholar 

  95. Liu H, Wei R, Xiang Y, Tong A (2015) Fluorescence turn-on detection of pyrophosphate based on aggregation-induced emission property of 5-chlorosalicylaldehyde azine. Anal Methods 7:753–758

    Article  CAS  Google Scholar 

  96. Tang W, Xiang Y, Tong A (2009) Salicylaldehyde azines as fluorophores of aggregation-induced emission enhancement characteristics. J Org Chem 74:2163–2166

    Article  CAS  Google Scholar 

  97. Chen X, Yamaguchi A, Namekawa M, Kamijo T, Teramae N, Tong A (2011) Functionalization of mesoporous silica membrane with a Schiff base fluorophore for Cu(II) ion sensing. Anal Chim Acta 696:94–100

    Article  CAS  Google Scholar 

  98. Yang Y, Zhao Q, Feng W, Li F (2013) Luminescent chemodosimeters for bioimaging. Chem Rev 113:192–270

    Article  CAS  Google Scholar 

  99. Guo LE, Zhang JF, Liu XY, Zhang LM, Zhang HL, Chen JH, Xie XG, Zhou Y, Luo K, Yoon J (2015) Phosphate ion targeted colorimetric and fluorescent probe and its use to monitor endogeneous phosphate ion in a hemichannel-closed cell. Anal Chem 87:1196–1201

    Article  CAS  Google Scholar 

  100. Kumari N, Huang H, Chao H, Gasser G, Zelder F (2016) A disassembly strategy for imaging endogenous pyrophosphate in mitochondria by using an FeIII–salen complex. ChemBioChem 17:1211–1215

    Article  CAS  Google Scholar 

  101. Ojida A, Takashima I, Kohira T, Nonaka H, Hamachi I (2008) Turn-on fluorescence sensing of nucleoside polyphosphates using a xanthene-based Zn(II) complex chemosensor. J Am Chem Soc 130:12095–12101

    Article  CAS  Google Scholar 

  102. Kohira T, Takashima I, Nonaka H, Ojida A, Hamachi I (2008) Real-time off/on-mode fluorescence assay for enzyme reactions involving nucleoside polyphosphates by use of a xanthene ZnII-Dpa chemosensor. Chem Lett 37:1164–1165

    Article  CAS  Google Scholar 

  103. Kurishita Y, Kohira T, Ojida A, Hamachi I (2012) Organelle-localizable fluorescent chemosensors for site-specific multicolor imaging of nucleoside polyphosphate dynamics in living cells. J Am Chem Soc 134:18779–18789

    Article  CAS  Google Scholar 

  104. Kittiloespaisan E, Ojida A, Hamachi I, Seetang-Nun Y, Kiatpathomchai W, Wongkongkatep J (2012) Label-free fluorescent detection of loop-mediated isothermal amplification of nucleic acid using pyrophosphate-selective xanthene-based Zn(II)-coordination chemosensor. Chem Lett 41:1666–1668

    Article  CAS  Google Scholar 

  105. Tiposoth P, Khamsakhon S, Ketsub N, Pongtharangkul T, Takashima I, Ojida A, Hamachi I, Wongkongkatep J (2015) Rapid and quantitative fluorescence detection of pathogenic spore-forming bacteria using a xanthene-Zn(II) complex chemosensor. Sens Actuat B 209:606–612

    Article  CAS  Google Scholar 

  106. Melhorn MI, Brodsky AS, Estanislau J, Khoory JA, Illigens B, Hamachi I, Kurishita Y, Fraser AD, Nicholson-Weller A, Dolmatova E, Duffy HS, Ghiran IC (2013) CR1-mediated ATP release by human red blood cells promotes CR1 clustering and modulates the immune transfer process. J Biol Chem 288:31139–31153

    Article  CAS  Google Scholar 

Download references

Acknowledgements

JW is grateful to the Faculty of Science, Mahidol University and the Thailand Research Fund (IRG5980001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itaru Hamachi.

Additional information

This article is part of the Topical Collection “Phosphate Labeling and Sensing in Chemical Biology”; edited by Henning Jessen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wongkongkatep, J., Ojida, A. & Hamachi, I. Fluorescence Sensing of Inorganic Phosphate and Pyrophosphate Using Small Molecular Sensors and Their Applications. Top Curr Chem (Z) 375, 30 (2017). https://doi.org/10.1007/s41061-017-0120-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-017-0120-0

Keywords

Navigation